
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Tempered Particle Filtering

Edward Herbst and Frank Schorfheide

2016-072

Please cite this paper as:
Herbst, Edward and Frank Schorfheide (2016). “Tempered Particle Filtering,” Finance and
Economics Discussion Series 2016-072. Washington: Board of Governors of the Federal
Reserve System, http://dx.doi.org/10.17016/FEDS.2016.072.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.

Tempered Particle Filtering

Edward Herbst

Federal Reserve Board

Frank Schorfheide∗

University of Pennsylvania

PIER, CEPR, and NBER

August 25, 2016

Abstract

The accuracy of particle filters for nonlinear state-space models crucially depends

on the proposal distribution that mutates time t− 1 particle values into time t values.

In the widely-used bootstrap particle filter this distribution is generated by the state-

transition equation. While straightforward to implement, the practical performance is

often poor. We develop a self-tuning particle filter in which the proposal distribution is

constructed adaptively through a sequence of Monte Carlo steps. Intuitively, we start

from a measurement error distribution with an inflated variance, and then gradually

reduce the variance to its nominal level in a sequence of steps that we call tempering.

We show that the filter generates an unbiased and consistent approximation of the

likelihood function. Holding the run time fixed, our filter is substantially more accurate

in two DSGE model applications than the bootstrap particle filter.

JEL CLASSIFICATION: C11, C15, E10

KEY WORDS: Bayesian Analysis, DSGE Models, Nonlinear Filtering, Monte Carlo Methods

∗Correspondence: E. Herbst: Board of Governors of the Federal Reserve System, 20th Street and Con-

stitution Avenue N.W., Washington, D.C. 20551. Email: edward.p.herbst@frb.gov. F. Schorfheide: De-

partment of Economics, 3718 Locust Walk, University of Pennsylvania, Philadelphia, PA 19104-6297. We

thank seminar participants at the Board of Governors and the Federal Reserve Bank of Cleveland for helpful

comments. Email: schorf@ssc.upenn.edu. Schorfheide gratefully acknowledges financial support from the

National Science Foundation under the grant SES 1424843. The views expressed in this paper are those of

the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal

Reserve System.

1

1 Introduction

Estimated dynamic stochastic general equilibrium (DSGE) models are now widely used by

academics to conduct empirical research in macroeconomics as well as by central banks to

interpret the current state of the economy, to analyze the impact of changes in monetary

or fiscal policies, and to generate predictions for macroeconomic aggregates. In most ap-

plications, the estimation utilizes Bayesian techniques, which require the evaluation of the

likelihood function of the DSGE model. If the model is solved with a (log)linear approx-

imation technique and driven by Gaussian shocks, then the likelihood evaluation can be

efficiently implemented with the Kalman filter. If, however, the DSGE model is solved using

a nonlinear technique, the resulting state-space representation is nonlinear and the Kalman

filter can no longer be used.

Fernández-Villaverde and Rubio-Ramı́rez (2007) proposed to use a particle filter to evalu-

ate the likelihood function of a nonlinear DSGE model and many other papers have followed

this approach since. However, configuring the particle filter so that it generates an accurate

approximation of the likelihood function remains a key challenge. The contribution of this

paper is to propose a self-tuning particle filter, which we call a tempered particle filter, that

in our applications is substantially more accurate than the widely-used bootstrap particle

filter.

Our starting point is the state-space representation of a potentially nonlinear DSGE

model given by a measurement equation and a state-transition equation the form

yt = Ψ(st, t; θ) + ut, ut ∼ N
(
0,Σu(θ)

)
(1)

st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ).

The functions Ψ(st, t; θ) and Φ(st−1, εt; θ) are generated numerically when solving the DSGE

model. Here yt is a ny× 1 vector of observables, ut is a ny× 1 vector of normally distributed

measurement errors, and st is an ns × 1 vector of hidden states. In order to obtain the

likelihood increments p(yt+1|Y1:t, θ), where Y1:t = {y1, . . . , yt}, it is necessary to integrate out

the latent states:

p(yt+1|Y1:t, θ) =

∫ ∫
p(yt+1|st+1, θ)p(st+1|st, θ)p(st|Y1:t, θ)dst+1dst, (2)

which can be done recursively with a filter.

2

Particle filters represent the distribution of the hidden state vector st conditional on time

t information Y1:t = {y1, . . . , yt} through a swarm of particles {sjt ,W j
t }Mj=1 such that

1

M

M∑
j=1

h(sjt)W
j
t ≈

∫
h(st)p(st|Y1:t, θ). (3)

The approximation here is in the sense of a strong law of large numbers (SLLN) or a central

limit theorem (CLT). The approximation error vanishes as the number of particles M tends

to infinity. The filter recursively generates approximations of p(st|Y1:t, θ) for t = 1, . . . , T

and produces approximations of the likelihood increments p(yt|Y1:t, θ) as a by-product. There

exists a large literature on particle filters. Surveys and tutorials are provided, for instance,

by Arulampalam, Maskell, Gordon, and Clapp (2002), Cappé, Godsill, and Moulines (2007),

Doucet and Johansen (2011), Creal (2012), and Herbst and Schorfheide (2015). Textbook

treatments of the statistical theory underlying particle filters can be found in Liu (2001),

Cappé, Moulines, and Ryden (2005), and Del Moral (2013).

The conceptually most straightforward version of the particle filter is the bootstrap par-

ticle filter proposed by Gordon, Salmond, and Smith (1993). This filter uses the state-

transition equation to turn sjt−1 particles onto sjt particles, which are then reweighted based

on their success in predicting the time t observation, measured by p(yt|sjt , θ). While the

bootstrap particle filter is easy to implement, it relies on the state-space model’s ability to

accurately predict yt by forward simulation of the state-transition equation. In general, the

lower the average density p(yt|sjt , θ), the more uneven the distribution of the updated particle

weights, and the less accurate the approximation in (3).

Ideally, the proposal distribution for sjt should not just be based on the state-transition

equation p(st|st−1, θ), but also account for the observation yt. In fact, conditional on sjt−1

the optimal proposal distribution is the posterior

p(st|yt, sjt−1, θ) ∝ p(yt|st, θ)p(st|sjt−1, θ),

where ∝ denotes proportionality. Unfortunately, in a generic nonlinear state-space model, it

is not possible to directly sample from this distribution. Constructing an approximation for

p(st|yt, sjt−1, θ) in a generic state-space model is difficult and often involves tedious model-

specific calculations that have to be executed by the user of the algorithm prior to its

implementation.1 The innovation in our paper is to generate this approximation in a sequence

1Attempts include approximations based on the one-step Kalman filter updating formula applied to a

3

of Monte Carlo steps. The starting point is the observation, that the larger the measurement

error variance the more accurate the filter becomes, because holding everything else constant,

the variance of the particle weights decreases. Building on this insight, in each period t,

we generate sjt by forward simulation, but then update the particle weights based on a

density p1(yt|st, θ) with an inflated measurement error variance. In a sequence of steps that

we call tempering, we reduce this inflated measurement error variance to its nominal level.

These steps mimic a sequential Monte Carlo algorithm designed for a static parameter. Such

algorithms have been successfully used to approximate posterior distributions for parameters

of econometric models.2

We show that our proposed tempered particle filter produces a valid approximation of the

likelihood function and substantially reduces the Monte Carlo error relative to the bootstrap

particle filter, even after controlling for computational time. Our algorithm can be embed-

ded into particle Markov chain Monte Carlo algorithms that replace the true likelihood by

a particle-filter approximation; see, for instance, Fernández-Villaverde and Rubio-Ramı́rez

(2007) for DSGE model applications and Andrieu, Doucet, and Holenstein (2010) for the

underlying statistical theory.

The remainder of the paper is organized as follows. The proposed tempered particle

filter is presented in Section 2. We provide a SLLN for the particle filter approximation of

the likelihood function in Section 3 and show that the approximation is unbiased. Here we

are focusing of a version of the filter that is non-adaptive. The filter is applied to a small-

scale New Keynesian DSGE model and the Smets-Wouters model in Section 4 and Section 5

concludes. Theoretical derivations, computational details, DSGE model descriptions, and

data sources are relegated to the Online Appendix.

2 The Tempered Particle Filter

A key determinant of the behavior of a particle filter is the distribution of the normalized

weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
i=1 w̃

j
tW

j
t−1

,

linearized version of the DSGE model. Alternatively, one could use the updating step of an approximate
filter, e.g., the ones developed by Andreasen (2013) or Kollmann (2015).

2Chopin (2002) first showed how to use sequential Monte Carlo methods to conduct inference on a
parameter that does not evolve over time. Applications to the estimation of DSGE model parameters
have been considered in Creal (2007) and Herbst and Schorfheide (2014). Durham and Geweke (2014) and
Bognanni and Herbst (2015) provide applications to the estimation of other time-series models.

4

where W j
t−1 is the (normalized) weight associated with the jth particle at time t − 1, w̃jt

incremental weight after observing yt, and W̃ j
t is the normalized weight accounting for this

new observation.3 For the bootstrap particle filter, the incremental weight is simply the

likelihood of observing yt given the jth particle, p(yt|sjt , θ).

One can show that, holding the observations fixed, the bootstrap particle filter becomes

more accurate as the measurement error variance increases because the variance of the par-

ticle weights {W̃t}Mj=1 decreases. Consider the following stylized example which examines

an approximate population analogue for W̃ j
t . Suppose that yt is scalar, the measurement

errors are distributed as ut ∼ N(0, σ2
u), Wt−1 = 1, and let δt = yt − Ψ(st, t; θ). Moreover,

assume that in population the δt’s are distributed according to a N(0, 1). In this case, we

can define the weights v(δt) normalized under the population distribution of δt as (omitting

t subscripts):

v(δ) =
exp

{
− 1

2σ2
u
δ2
}

(2π)−1/2
∫

exp
{
−1

2

(
1 + 1

σ2
u

)
δ2
}
dδ

=

(
1 +

1

σ2
u

)1/2

exp

{
− 1

2σ2
u

δ2

}
.

By virtue of the normalization, the mean of the weights is equal to one: E[v(δ)] = 1.

The population variance of the weights v(δ) is given by

V[v(δ)] =

∫
v2(δ)dδ − 1 =

1

σu

1 + σ2
u√

2 + σ2
u

− 1.

Note that V[v(δ)] −→ ∞ as σu −→ 0. Moreover, V[v(δ)] −→ 0 as σu −→ ∞. By differenti-

ating with respect to σu one can show that the variance is monotonically decreasing in the

measurement error variance σ2
u. This heuristic illustrates that the larger the measurement

error variance in the state-space model (holding the observations fixed), the smaller the vari-

ance of the particle weights. Because the variance of an importance sampling approximation

is an increasing function of the variance of the particle weights, increasing the measurement

error variance tends to raise the accuracy of the particle filter approximation.

We use this insight to construct a tempered particle filter in which we generate proposed

particle values s̃jt sequentially, by reducing the measurement error variance from an inflated

3In the notation developed subsequently, the tilde on W̃ j
t indicates that this is weight associated with

particle j before any resampling of the particles.

5

initial level Σu(θ)/φ1 to the nominal level Σu(θ). Formally, define

pn(yt|st, θ) ∝ φd/2n |Σu(θ)|−1/2 exp

{
−1

2
(yt −Ψ(st, t; θ))

′φnΣ−1
u (θ)(yt −Ψ(st, t; θ))

}
, (4)

where:

φ1 < φ2 < . . . < φNφ = 1.

Here φn scales the inverse covariance matrix of the measurement error and can therefore be

interpreted as a precision parameter. The reduction of the measurement error variance is

achieved by a sequence of Monte Carlo steps that we borrow from the literature of SMC

approximations for posterior moments of static parameters (see Chopin (2002) and, for

instance, the treatment in Herbst and Schorfheide (2015)).

By construction, pNφ(yt|st, θ) = p(yt|st, θ). Based on pn(yt|st, θ) we can define the bridge

distributions

pn(st|yt, st−1, θ) ∝ pn(yt|st, θ)p(st|st−1, θ). (5)

Integrating out st−1 under the distribution p(st−1|Y1:t−1, θ) yields the bridge posterior density

for st conditional on the observables:

pn(st|Y1:t, θ) =

∫
pn(st|yt, st−1, θ)p(st−1|Y1:t−1, θ)dst−1. (6)

In the remainder of this section we describe the proposed tempered particle filter. We do so

in two steps: Section 2.1 presents the main algorithm that iterates over periods t = 1, . . . , T

to approximate the likelihood increments p(yt|Y1:t−1, θ) and the filtered states p(st|Y1:t, θ).

In Section 2.2 we focus on the novel component of our algorithm, which in every period t

uses Nφ steps to reduce the measurement error variance from Σu(θ)/φ1 to Σu(θ).

2.1 The Main Iterations

The tempered particle filter has the same structure as the bootstrap particle filter. In

every period t, we use the state-transition equation to simulate the state vector forward, we

update the particle weights, and we resample the particles. The key innovation is to start

out with a fairly large measurement error variance, which is then iteratively reduced to the

nominal measurement error variance Σu(θ). As the measurement error variance is reduced

6

(tempering), we adjust the innovations to the state-transition equation as well as the particle

weights. The algorithm is essentially self-tuning. The user only has to specify the overall

number of particles M and two tuning parameters for the tempering steps. The tempering

sequence φ1, . . . , φNφ can be chosen adaptively. We will provide more details in Section 2.2.

Algorithm 1 summarizes the iterations over periods t = 1, . . . , T .

Algorithm 1 (Tempered Particle Filter)

1. Period t = 0 initialization. Draw the initial particles from the distribution sj0
iid∼

p(s0|θ) and set Nφ = 1, s
j,Nφ
0 = sj0, and W

j,Nφ
0 = 1, j = 1, . . . ,M .

2. Period t Iterations. For t = 1, . . . , T :

(a) Particle Initialization.

i. Starting from {sj,Nφt−1 ,W
j,Nφ
t−1 }, generate ε̃j,1t ∼ Fε(·; θ) and define

s̃j,1t = Φ(s
j,Nφ
t−1 , ε̃

j,1
t ; θ).

ii. Compute the incremental weights:

w̃j,1t = p1(yt|s̃j,1t , θ) (7)

= (2π)−d/2φ
d/2
1 |Σu(θ)|−1/2

×
[
exp

{
− 1

2

(
yt −Ψ(s̃j,1t , t; θ)

)′
φ1Σ−1

u (θ)
(
yt −Ψ(s̃j,1t , t; θ)

)}]
.

iii. Normalize the incremental weights:

W̃ j,1
t =

w̃j,1t W
j,Nφ
t−1

1
M

∑M
j=1 w̃

j,1
t W

j,Nφ
t−1

(8)

to obtain the particle swarm {s̃j,1t , ε̃j,1t , s
j,Nφ
t−1 , W̃

j,1
t }, which leads to the approx-

imation

h̃1
t,M =

1

M

M∑
j=1

h(s̃j,1t)W̃ j,1
t ≈

∫
h(st)p1(st|Y1:t, θ)dst. (9)

Moreover
1

M

M∑
j=1

w̃j,1t W
j,Nφ
t−1 ≈ p1(yt|Y1:t−1, θ). (10)

7

iv. Resample the particles:

{s̃j,1t , ε̃j,1t , s
j,Nφ
t−1 , W̃

j,1
t } 7→ {sj,1t , εj,1t , s

j,Nφ
t−1 ,W

j,1
t },

where W j,1
t = 1 for j = 1, . . . , N . This leads to the approximation

h̄1
t,M =

1

M

M∑
j=1

h(sj,1t)W j,1
t ≈

∫
h(st)p1(st|Y1:t)dst. (11)

(b) Tempering Iterations: Execute Algorithm 2 to

i. convert the particle swarm

{sj,1t , εj,1t , s
j,Nφ
t−1 ,W

j,1
t } 7→ {sj,Nφt , ε

j,Nφ
t , s

j,Nφ
t−1 ,W

j,Nφ
t }

to approximate

h̄
Nφ
t,M =

1

M

M∑
j=1

h(s
j,Nφ
t)W

j,Nφ
t ≈

∫
h(st)p(st|Y1:t, θ)dst; (12)

ii. compute the approximation p̂M(yt|Y1:t−1, θ) of the likelihood increment.

3. Likelihood Approximation

p̂M(Y1:T |θ) =
T∏
t=1

p̂M(yt|Y1:t−1, θ). � (13)

If we were to set φ1 = 1, Nφ = 1, and omit Step 2.(b), then Algorithm 1 is exactly

identical to the bootstrap particle filter: the sjt−1 particle values are simulated forward using

the state-transition equation, the weights are then updated based on how well the new state

s̃jt predicts the time t observations, measured by the predictive density p(yt|s̃jt), and finally

the particles are resampled using a standard resampling algorithm, such as multinominal

resampling, or systematic resampling.4

The drawback of the bootstrap particle filter is that the proposal distribution for the

innovation ε̃jt ∼ Fε(·; θ) is “blind,” in that it is not adapted to the period t observation yt.

This typically leads to a large variance in the incremental weights w̃jt , which in turn translates

4Detailed textbook treatments of resampling algorithms can be found in the by Liu (2001) and Cappé,
Moulines, and Ryden (2005).

8

into inaccurate Monte Carlo approximations. Taking the states {sjt−1}Mj=1 as given and

assuming that a t− 1 resampling step has equalized the particle weights, that is, W j
t−1 = 1,

the conditionally optimal choice for the proposal distribution is p(ε̃jt |sjt−1, yt, θ). However,

because of the nonlinearity in state-transition and measurement equation, it is not possible

to directly generate draws from this distribution. The main idea of our algorithm is to

sequentially adapt the proposal distribution for the innovations to the current observation

yt by raising φn from a small initial value to φNφ = 1.5 This is done in Step 2(b), which is

described in detail in Algorithm 2 in the next section.

In general, we could replace the draws of ε̃j,1t from the innovation distribution Fε(·; θ) in

Step 2(a)i of Algorithm 2 with draws from a tailored distribution with density g1
t (ε̃

j,1
t |s

j,Nφ
t−1)

and then adjust the incremental weight ω̃j,1t by the ratio pε(ε̃
j,1
t)/g1

t (ε̃
j,1
t |s

j,Nφ
t−1), as it is done

in the generalized version of the particle filter. Here the gt(·) density might be constructed

based on a linearized version of the DSGE model or be obtained through the updating steps

of a conventional nonlinear filter, such as an extended Kalman filter, unscented Kalman filter,

or a Gaussian quadrature filter. Thus, the proposed tempering steps can be used either to

relieve the user from the burden of having to construct a g1
t (ε̃

j,1
t |s

j,Nφ
t−1) in the first place; or it

could be used to improve upon the accuracy obtained with a readily-available g1
t (ε̃

j,1
t |s

j,Nφ
t−1).

2.2 Tempering the Measurement Error Variance

The tempering iterations build on the sequential Monte Carlo (SMC) algorithms that have

been developed for static parameters. In these algorithms (see, for instance, Chopin (2002),

Durham and Geweke (2014), Herbst and Schorfheide (2014, 2015)), the goal is to generate

draws from a posterior distribution p(θ|Y) by sampling from a sequence of bridge posteriors

pn(θ|Y) ∝
[
p(Y |θ)

]φn
p(θ). Note that the bridge posterior is equal to the actual posterior

for φn = 1. At each iteration, the algorithm cycles through three stages: particle weights

are updated in the correction step; the particles are being resampled and particle weights

are equalized in the selection step; and particle values are changed in the mutation step.

The analogue of
[
p(Y |θ)

]φn
in our algorithm is pn(yt|st, θ) given in (4), which reduces to

p(yt|st, θ) for φn = 1. Algorithm 2 summarizes the correction, selection, and mutation steps

for tempering iterations n = 2, . . . , Nφ.

5The number of iterations that we are using depends on the period t, but to simplify the notation
somewhat, we dropped the t subscript and write Nφ rather than Nφ,t.

9

Algorithm 2 (Tempering Iterations) This algorithm receives as input the particle swarm

{sj,1t , εj,1t , s
j,Nφ
t−1 ,W

j,1
t } and returns as output the particle swarm {sj,Nφt , ε

j,Nφ
t , s

j,Nφ
t−1 ,W

j,Nφ
t } and

the likelihood increment p̂M(yt|Y1:t−1, θ). Set n = 2 and Nφ = 0.

1. Do until n = Nφ:

(a) Correction:

i. For j = 1, . . . ,M define the incremental weights

w̃j,nt (φn) =
pn(yt|sj,n−1

t , θ)

pn−1(yt|sj,n−1
t , θ)

(14)

=

(
φn
φn−1

)d/2
exp

{
− 1

2

[
yt −Ψ(sj,n−1

t , t; θ)
]′

×(φn − φn−1)Σ−1
u

[
yt −Ψ(sj,n−1

t , t; θ)
]}
.

ii. Define the normalized weights

W̃ j,n
t (φn) =

w̃j,nt (φn)W j,n−1
t

1
M

∑M
j=1 w̃

j,n
t (φn)W j,n−1

t

, (15)

(W j,n−1
t = 1, because the resampling step was executed in iteration n − 1),

and the inefficiency ratio

InEff(φn) =
1

M

M∑
j=1

(
W̃ j,n
t (φn)

)2
. (16)

iii. If InEff(φn = 1) ≤ r∗, then set φn = 1, Nφ = n, and W̃ j,n
t = W̃ j,n

t (φn = 1).

Otherwise, let n = n + 1, φ∗n be the solution to InEff(φ∗n) = r∗, and W̃ j,n
t =

W̃ j,n
t (φn = φ∗n).

iv. The particle swarm {sj,n−1
t , εj,n−1

t , s
j,Nφ
t−1 , W̃

j,n
t } approximates

h̃nt,M =
1

M

M∑
j=1

h(sj,n−1
t)W̃ j,n

t ≈
∫
h(st)pn(st|Y1:t, θ)dst. (17)

(b) Selection: Resample the particles:

{sj,n−1
t , εj,n−1

t , s
j,Nφ
t−1 , W̃

j,n
t } 7→ {ŝj,nt , ε̂j,nt , s

j,Nφ
t−1 ,W

j,n
t },

10

where W j,n
t = 1 for j = 1, . . . , N . Keep track of the correct ancestry information

such that

ŝj,nt = Φ(s
j,Nφ
t−1 , ε̂

j,n
t ; θ)

for each j. This leads to the approximation

ĥnt,M =
1

M

M∑
j=1

h(ŝj,nt)W j,n
t ≈

∫
h(st)pn(st|Y1:t, θ)dst. (18)

(c) Mutation: Use a Markov transition kernel Kn(st|ŝt; st−1) with the invariance

property

pn(st|yt, st−1, θ) =

∫
Kn(st|ŝt; st−1)pn(ŝt|yt, st−1, θ)dŝt (19)

to mutate the particle values (see Algorithm 3 for an implementation). This leads

to the particle swarm {sj,nt , εj,nt , s
j,Nφ
t−1 ,W

j,n
t }, which approximates

h̄nt,M =
1

M

M∑
j=1

h(sj,nt)W j,n
t ≈

∫
h(st)pn(st|Y1:t, θ)dst. (20)

2. Approximate the likelihood increment:

p̂M(yt|Y1:t−1, θ) =

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nt W j,n−1
t

)
(21)

with the understanding that W j,0
t = W

j,Nφ
t−1 . �

The correction step adapts the stage n − 1 particle swarm to the reduced measurement

error variance in stage n by reweighting the particles. The incremental weights in (14) capture

the change in the measurement error variance from Σn(θ)/φn−1 to Σn(θ)/φn and yield an

importance sampling approximation of pn(st|Y1:t, θ) based on the stage n− 1 particle values.

Rather than relying on a fixed exogenous tempering schedule {φn}Nφn=1, we choose φn to

achieve a targeted inefficiency ratio r∗ > 1, an approach that has proven useful in the context

of global optimization of nonlinear functions. Geweke and Frischknecht (2014) develop an

adaptive SMC algorithm incorporating targeted tempering to solve such problems. To relate

the inefficiency ratio to φn, we begin by defining

ej,t =
1

2
(yt −Ψ(sj,n−1

t , t; θ))′Σ−1
u (yt −Ψ(sj,n−1

t , t; θ)).

11

Assuming that the particles were resampled in iteration n− 1 and W j,n−1
t = 1, we can then

express the inefficiency ratio as

InEff(φn) =
1

M

M∑
j=1

(
W̃ j,n
t (φn)

)2
=

1
M

∑M
j=1 exp[−2(φn − φn−1)ej,t](

1
M

∑M
j=1 exp[−(φn − φn−1)ej,t]

)2 . (22)

It is straightforward to verify that for φn = φn−1 the inefficiency ratio InEff(φn) = 1 < r∗.

Moreover, we show in the Online Appendix that the function is monotonically increasing

on the interval [φn−1, 1], which is the justification for Step 1(a)iii of Algorithm 3. Thus, we

are raising φn as closely to one as we can without exceeding a user-defined bound on the

variance of the particle weights. Note that we can use the same approach to set the initial

scaling factor φ1 in Algorithm 1.

The selection step is executed in every iteration n to ensure that we can find a unique

φn+1 based on (22) in the subsequent iteration. The equalization of the particle weights

allows us to characterize the properties of the function InEff(φn). Finally, in the mutation

step we are using a Markov transition kernel to change the particle values (sj,nt , εj,nt) in a

way to maintain an approximation of pn(st|Y1:t, θ). In the absence of the mutation step the

initial particle values (sj,1t , ε
j,1
t) generated in Step 2(a) of Algorithm 2 would never change

and we would essentially reproduce the bootstrap particle filter by computing p(yt|s̃jt , θ)
sequentially under a sequence of measurement error covariance matrices that converges to

Σu(θ). The mutation can be implemented with NMH steps of a random walk Metropolis-

Hastings (RWMH) algorithm.

Algorithm 3 (RWMH Mutation Step) This algorithm receives as input the particle swarm

{ŝj,nt , ε̂j,nt , s
j,Nφ
t−1 ,W

j,n
t } and returns as output the particle swarm {sj,nt , εj,nt , s

j,Nφ
t−1 ,W

j,n
t }.

1. Tuning of Proposal Distribution: Compute

µεn =
1

M

M∑
j=1

ε̂j,nt W j,n
t , Σε

n =
1

M

M∑
j=1

ε̂j,nt (ε̂j,nt)′W j,n
t − µεn(µεn)′.

2. Execute NMH Metropolis-Hastings Steps for Each Particle: For j = 1, . . .M :

(a) Set ε̂j,n,0t = ε̂j,nt . Then, for l = 1, . . . , NMH :

12

i. Generate a proposed innovation:

ejt ∼ N
(
ε̂j,n,l−1
t , c2

nΣε
n

)
.

ii. Compute the acceptance rate:

α(ejt |ε̂j,n,l−1
t) = min

{
1,

pn(yt|ejt , s
j,Nφ
t−1 , θ)pε(e

j
t)

pn(yt|ε̂j,n,l−1
t , s

j,Nφ
t−1 , θ)pε(ε̂

j,n,l−1
t)

}
.

iii. Update particle values:

ε̂j,n,lt =

{
ejt with prob. α(ejt |ε̂j,n,l−1

t)

ε̂j,n,l−1
t with prob. 1− α(ejt |ε̂j,n,l−1

t)

(b) Define

εj,nt = ε̂j,n,NMH
t , sj,nt = Φ(s

j,Nφ
t−1 , ε

j,n
t ; θ). �

To tune the RWMH steps, we use the {ε̂j,nt ,W j,n
t } particles (this is the output from the

selection step in Algorithm 2) to compute a covariance matrix for the Gaussian proposal

distribution used in Step 2.(a) of Algorithm 3. We scale the covariance matrix adaptively

by cn to achieve a desired acceptance rate. In particular, we compute the average empirical

rejection rate R̂n−1(cn−1), based on the Mutation phase in iteration n − 1. The average is

computed across the NMH RWMH steps. We set c1 = c∗ and for n > 2 adjust the scaling

factor according to

cn = cn−1f
(
1− R̂n−1(cn−1)

)
, f(x) = 0.95 + 0.10

e20(x−0.40)

1 + e20(x−0.40)
. (23)

This function is designed to increase the scaling factor by 5 percent if the acceptance rate

is well above 0.40, and decrease the scaling factor by 5 percent if the acceptance rate is well

below 0.40. For acceptance rates near 0.40, the increase (or decrease) of cn is attenuated by

the logistic component of the function above. In our empirical applications, the performance

of the filter was robust to variations on the rule.

In order to run Algorithm 3 the user has to specify the initial scaling of the proposal

covariance matrix c∗, as well as the number of Metropolis-Hastings steps. In principle, the

user can also adjust the target acceptance rate and the speed of adjustment in (23).

13

3 Theoretical Properties of the Filter

We will now examine asymptotic (with respect to the number of particles M) and finite sam-

ple properties of the particle filter approximation of the likelihood function. Section 3.1 pro-

vides a SLLN and Section 3.2 shows that the likelihood approximation is unbiased. Through-

out this section, we will focus on a version of the filter that is not self-tuning. This version

of the filter replaces Algorithm 2 by Algorithm 4 and Algorithm 3 by Algorithm 5:

Algorithm 4 (Tempering Iterations – Not Self-Tuning) This algorithm is identical to

Algorithm 2, with the exception that the tempering schedule {φn}Nφn=1 is pre-determined. The

Do until n = Nφ-loop is replaced by a For n = 1 to Nφ-loop and Step 1(a)iii is eliminated. �

Algorithm 5 (RWMH Mutation Step – Not Self-Tuning) This algorithm is identi-

cal to Algorithm 3 with the exception that the sequences {cn,Σε
n}

Nφ
n=1 are pre-determined.

�

Extensions of the asymptotic results to self-tuning sequential Monte Carlo algorithms are

discussed, for instance, in Herbst and Schorfheide (2014) and Durham and Geweke (2014).

3.1 Asymptotic Properties

Under suitable regularity conditions the Monte Carlo approximations generated by a particle

filter satisfy a SLLN and a CLT. Proofs for a generic particle filter are provided in Chopin

(2004). We will subsequently establish a SLLN for the tempered particle filter, by modifying

the recursive proof developed by Chopin (2004) to account for the tempering iterations of

Algorithm 4. To simplify the notation we drop θ from the conditioning set of all densities.

In this paper we are primarily interested in establishing an almost-sure limit for the Monte

Carlo approximation of the likelihood function:

p̂M(Y1:T) =
T∏
t=1

p̂M(yt|Y1:t−1)
a.s.−→

T∏
t=1

p1(yt|Y1:t−1)

Nφ∏
n=2

pn(yt|Y1:t−1)

pn−1(yt|Y1:t−1)

 = p(Y1:T). (24)

Here the last equality follows because pNφ(yt|Y1:t−1) = p(yt|Y1:t−1) by definition. The limit

is obtained by letting the number of particles M −→ ∞. We assume that the length of the

14

sample T is fixed. As a by-product, we also derive an almost-sure limit for Monte Carlo

approximations of moments of the filtered states:

h̄nt,M =
1

M

M∑
j=1

h(sj,nt , s
j,Nφ
t−1)W j,n

t
a.s.−→

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (25)

We use h(·) to denote a generic function of both st and st−1 for technical reasons that will

be explained below.6 Of course, a special case is a function that is constant with respect to

st−1. For short, we simply denote such functions by h(st).

In order to guarantee the almost-sure convergence, we need to impose some regularity

conditions on the functions h(st, st−1). We define the following classes of functions:

H1
t =

{
h(st, st−1)

∣∣∣∣ ∫ Ep(·|st−1)[|h(st, st−1)|]p(st−1|Y1:t−1)dst−1 <∞, (26)

∃δ > 0 s.t. Ep(·|st−1)

[∣∣h(st, st−1)− Ep(·|st−1)[h]
∣∣1+δ

]
< C <∞,

Ep(·|st−1)[h] ∈ HNφ
t−1

}
and for n = 2, . . . , Nφ:

Hn
t =

{
h(st, st−1)

∣∣∣∣h(st, st−1) ∈ Hn−1
t , (27)

∃δ > 0 s.t. EKn(·|ŝt,st−1)

[∣∣h(st, st−1)− EKn(·|ŝt,st−1)[h]
∣∣1+δ

]
< C <∞,

EKn(·|ŝt,st−1)[h(st, st−1)] ∈ Hn−1
t

}
.

By definition Hñ
t ⊆ Hn

t for ñ > n. The classes Hn
t are chosen such that the moment bounds

that guarantee the almost sure convergence of Monte Carlo averages of h(sj,nt , s
j,Nφ
t−1) are

satisfied. The key assumption here is that there exists a uniform bound for the centered 1+δ

conditional moment of the function h(st, st−1) under the state-transition density p(st|st−1)

and the transition kernel of the mutation step of Algorithm 5, Kn(st|ŝt, st−1). This will allow

us to apply a SLLN to the particles generated by the forward simulation of the model and

the mutation step in the tempering iterations.

6Spoiler alert: we need the st−1 because the Markov transition kernel generated by Algorithm 4 (or
Algorithm 2 is invariant under the distribution pn(st|yt, st−1), which is conditioned on st−1, instead of the
distribution pn(st|Y1:t).

15

For the class H1
1 to be properly defined according to (26) we need to define HNφ

0 . Let

H0 = HNφ
0 and note that Ep(·|s0)[h] is a function of s0 only. Thus, we define

H0 =

{
h(s0)

∣∣∣∣ ∫ |h(s0)|p(s0)ds0 <∞
}
. (28)

Under the assumption that the initial particles are generated by iid sampling from p(s0),

the integrability conditions ensures that we can apply Kolmogorov’s SLLN. Throughout

this paper, we use C to denote a generic constant. Notice that any bounded function

|h(·)| < h is an element of Hn
t for all t and n. Under the assumption that the measurement

errors have a multivariate normal distribution, the densities pn(yt|st) and the density ratios

pn(yt|st)/pn−1(yt|st) are bounded uniformly in st, which means that these functions are

elements of all Hn
t .

By changing the definition of the classesHn
t and requiring moments of order 2+δ to exist,

the subsequent theoretical results can be extended to a CLT following arguments in Chopin

(2004) and Herbst and Schorfheide (2014). The CLT provides a justification for computing

numerical standard errors from the variation of Monte Carlo approximations across multiple

independent runs of the filter, but the formulas for the asymptotic variances have an awkward

recursive form that makes it infeasible to evaluate them. Thus, they are of limited use in

practice.

3.1.1 Algorithm 1

In order to prove the convergence of the Monte Carlo approximations generated in Step 2(a)

of Algorithm 1 we can use well established arguments for the bootstrap particle filter, which

we adapt from the presentation in Herbst and Schorfheide (2015). We use
a.s.−→ to denote

almost-sure convergence as M −→∞. Starting point is the following recursive assumption:

Assumption 1 The particle swarm {sj,Nφt−1 ,W
j,Nφ
t−1 } generated by the period t− 1 iteration of

Algorithm 1 approximates:

h̄
Nφ
t−1,M =

1

M

M∑
j=1

h(s
j,Nφ
t−1)W

j,Nφ
t−1

a.s.−→
∫
h(st−1)p(st−1|Y1:t−1)dst−1. (29)

for functions h(st−1) ∈ HNφ
t−1.

16

In our statement of the recursive assumption we only consider functions that vary with

st−1, which is why we write h(st−1) (instead of h(st−1, st−2)). As discussed above, if the filter

is initialized by direct sampling from p(s0), then the recursive assumption is satisfied for

t = 1. Conditional on the recursive assumption, we can obtain the following convergence

result:

Lemma 1 Suppose that Assumption 1 is satisfied. Then for h ∈ H1
t :

ĥ1
t,M =

1

M

M∑
j=1

h(s̃j,1t , s
j,Nφ
t−1)W

j,Nφ
t−1

a.s.−→
∫ ∫

h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1 (30)

h̃1
t,M =

1
M

∑M
j=1 h(s̃j,1t , s

j,Nφ
t−1)w̃j,1t W

j,Nφ
t−1

1
M

∑M
j=1 w̃

j,1
t W

j,Nφ
t−1

a.s.−→
∫ ∫

h(st, st−1)p1(st, st−1|Y1:t)dstdst−1(31)

h̄1
t,M =

1

M

M∑
j=1

h(sj,1t , s
j,Nφ
t−1)W j,1

t
a.s.−→

∫ ∫
h(st, st−1)p1(st, st−1|Y1:t)dstdst−1. (32)

Moreover,

p̂1(yt|Y1:t−1) =
1

M

M∑
j=1

w̃j,1t W
j,Nφ
t−1

a.s.−→
∫
p1(yt|st)p1(st|Y1:t−1)dst. (33)

A formal proof of Lemma 1 that verifies the moment conditions required for the almost-

sure convergence is provided in the Online Appendix. Subsequently, we provide the key steps

of the argument. Because we need to keep track of joint densities (st, st−1), we define

pn(st, st−1|Y1:t) =
pn(yt|st)p(st|st−1)p(st−1|Y1:t−1)∫

pn(yt|st)
[∫
p(st|st−1)p(st−1|Y1:t−1)dst−1

]
dst

Here we used the fact that according to the state-space model the distribution of yt condi-

tional on st does not depend on (st−1, Y1:t−1). Moreover, the distribution of st conditional

on st−1 does not depend on Y1:t−1. Thus, integrating with respect to st−1 yields∫
pn(st, st−1|Y1:t)dst−1 = pn(st|Y1:t),

where pn(st|Y1:t) was previously introduced in (6).

The forward iteration of the state-transition equation amounts to drawing sjt from the

density p(st|sj,Nφt−1). Use E
p(·|s

j,Nφ
t−1)

[h] to denote expectations under this density and consider

17

the decomposition:

ĥ1
t,M −

∫ ∫
h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1 (34)

=
1

M

M∑
j=1

(
h(s̃j,1t , s

Nφ
t−1)− E

p(·|s
j,Nφ
t−1)

[h]

)
W

j,Nφ
t−1

+
1

M

M∑
j=1

(
E
p(·|s

j,Nφ
t−1)

[h]W
j,Nφ
t−1 −

∫ ∫
h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1

)
= I + II,

say. Both terms converge to zero. First, conditional on the particles {sj,Nφt−1 ,W
j,Nφ
t−1 } the

weights W
j,Nφ
t−1 are known and term I is an average of mean-zero random variables that are

independently distributed. Second, the definition of H1
t implies that E

p(·|s
j,Nφ
t−1)

[h] ∈ HNφ
t−1.

Thus, we can deduce from Assumption 1 that term II converges to zero. This delivers (30).

In slight abuse of notation we can now set h(·) to either h(st)p1(yt|st) or p1(yt|st) to deduce

the convergence result required to justify the approximations in (31) and (33). Finally, the

SLLN is preserved by the resampling step, which delivers (32).

3.1.2 Algorithm 4

The convergence results for the tempering iterations rely on the following recursive assump-

tion, which according to Lemma 1 is satisfied for n = 2.

Assumption 2 The particle swarm {sj,n−1
t , s

j,Nφ
t−1 ,W

j,n−1
t } generated by iteration n − 1 of

Algorithm 4 approximates:

h̄n−1
t,M =

1

M

M∑
j=1

h(sj,n−1
t , s

j,Nφ
t−1)W j,n−1

t
a.s.−→

∫ ∫
h(st, st−1)pn−1(st, st−1|Y1:t)dstdst−1. (35)

for functions h ∈ Hn
t .

The convergence results are stated in the following Lemma:

18

Lemma 2 Suppose that Assumption 2 is satisfied. Then for h ∈ Hn−1
t :

h̃nt,M =
1
M

∑M
j=1 h(sj,n−1

t , s
j,Nφ
t−1)w̃j,nt W j,n−1

t

1
M

∑M
j=1 w̃

j,n
t W j,n−1

t

(36)

a.s.−→
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1

ĥnt,M =
1

M

M∑
j=1

h(ŝj,nt , s
j,Nφ
t−1)W j,n

t
a.s.−→

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (37)

Moreover,
̂(

pn(yt|Y1:t−1)

pn−1(yt|Y1:t−1)

)
=

1

M

M∑
j=1

w̃j,nt W j,n−1
t

a.s.−→ pn(yt|Y1:t−1)

pn−1(yt|Y1:t−1)
(38)

and for h ∈ Hn
t

h̄nt,M =
1

M

M∑
j=1

h(sj,nt , s
j,Nφ
t−1)W j,n

t
a.s.−→

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (39)

The convergence in (39) implies that the recursive Assumption 2 is satisfied for iteration

n + 1 of Algorithm 4. Thus, we deduce that the convergence in (39) holds for n = Nφ.

This, in turn, implies that if the recursive Assumption 2 for Algorithm 1 is satisfied at the

beginning of period t it will also be satisfied at the beginning of period t+ 1. A formal proof

of Lemma 2 is provided in the Online Appendix. We will provide an outline of the argument

below.

Correction and Selection Steps. The convergence of the approximations in (36) and

(38), obtained after executing the correction step, follows from the recursive Assumption 2

and the fact that h(sj,n−1
t , s

j,Nφ
t−1) ∈ Hn−1

t and h(sj,n−1
t , s

j,Nφ
t−1)w̃j,nt ∈ Hn−1

t . Furthermore, it

relies on the following calculation:∫ ∫
h(st, st−1) pn(yt|st)

pn−1(yt|st)pn−1(st, st−1|Y1:t)dstdst−1∫ pn(yt|st)
pn−1(yt|st)pn−1(st|Y1:t)dst

(40)

=

∫ ∫
h(st, st−1) pn(yt|st)

pn−1(yt|st)
pn−1(yt|st)p(st,st−1|Y1:t−1)

pn−1(yt|Y1:t−1)
dstdst−1∫ pn(yt|st)

pn−1(yt|st)
pn−1(yt|st)p(st|Y1:t−1)

pn−1(yt|Y1:t−1)
dst

=

∫ ∫
h(st, st−1)pn(yt|st)p(st, st−1|Y1:t−1)dstdst−1∫

pn(yt|st)p(st|Y1:t−1)dst

=

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1.

19

The first equality is obtained by reversing Bayes Theorem and expressing the “posterior”

pn−1(st, st−1|Y1:t) as the product of “likelihood” pn−1(yt|st) and “prior” p(st, st−1|Y1:t−1) di-

vided by the “marginal likelihood” pn−1(yt|Y1:t−1). We then cancel the pn−1(yt|st) and the

marginal likelihood terms to obtain the second equality. Finally, an application of Bayes

Theorem leads to the third equality.

Recall that pNφ(yt|Y1:t−1) = p(yt|Y1:t−1) by construction and that an approximation of

p1(yt|Y1:t−1) is generated in Step 2.(a)iii of Algorithm 1. Together, this leads to the approxi-

mation of the likelihood increment p(yt|Y1:t−1) in (21). Resampling after the correction step

preserves the SLLN, which delivers (37).

Mutation Step. We now outline how to establish (39). Let

EKn(·|ŝt;st−1)[h] =

∫
h(st, st−1)Kn(st|ŝt; st−1)dst,

which is a function of (ŝt, st−1). We can decompose the Monte Carlo approximation from

the mutation step as follows:

1

M

M∑
j=1

h(sj,nt , s
j,Nφ
t−1)W j,n

t −
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1 (41)

=
1

M

M∑
j=1

(
h(sj,nt , s

j,Nφ
t−1)− E

Kn(·|ŝj,nt ;s
j,Nφ
t−1)

[h]

)
W j,n
t

+
1

M

M∑
j=1

(
E
Kn(·|ŝj,nt ;s

j,Nφ
t−1)

[h]−
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1

)
W j,n
t

= I + II, say.

By construction, conditional on the particles {ŝj,nt , s
j,Nφ
t−1 ,W

j,n
t } term I is an average of inde-

pendent mean-zero random variables, which converges to zero.

The analysis of term II is more involved for two reasons. First, as highlighted above,

E
Kn(·|ŝj,nt ;s

j,Nφ
t−1)

[h] is a function not only of ŝt but also of st−1. Second, while the invariance

20

property (19) implies that∫
EKn(·|ŝt;st−1)[h]pn(ŝt|yt, st−1)dŝt (42)

=

∫ (∫
h(st, st−1)Kn(st|ŝt; st−1)dst

)
pn(ŝt|yt, st−1)dŝt

=

∫
h(st, st−1)

(∫
Kn(st|ŝt; st−1)pn(ŝt|yt, st−1)dŝt

)
dst

=

∫
h(st, st−1)pn(st|yt, st−1)dst,

the summation over (ŝj,nt , s
j,Nφ
t−1 ,W

j,n
t) generates an integral with respect to pn(st, st−1|Y1:t)

instead of pn(st|yt, st−1); see (37).

To obtain the expected value of EKn(·|ŝt;st−1)[h] under the distribution pn(ŝt, st−1|Y1:t),

notice that

pn(st, st−1|Y1:t) = pn(st, st−1|yt, Y1:t−1) (43)

= pn(st|st−1, yt, Y1:t−1)p(st−1|yt, Y1:t−1)

= pn(st|st−1, yt)p(st−1|yt, Y1:t−1).

The last equality holds because, using the first-order Markov structure of the state-space

model, we can write

pn(st|yt, st−1, Y1:t−1) =
pn(yt|st, st−1, Y1:t−1)p(st|st−1, Y1:t−1)∫

st
pn(yt|st, st−1, Y1:t−1)p(st|st−1, Y1:t−1)dst

=
pn(yt|st)p(st|st−1)∫

st
pn(yt|st)p(st|st−1)dst

= pn(st|yt, st−1).

Therefore, we obtain∫ ∫
EKn(·|ŝt;st−1)[h]pn(ŝt, st−1|Y1:t)dŝtdst−1 (44)

=

∫ (∫
EKn(·|ŝt;st−1)[h]pn(ŝt|yt, st−1)dŝt

)
pn(st−1|yt, Y1:t−1)dst−1

=

∫ (∫
h(st, st−1)pn(st|yt, st−1)dst

)
pn(st−1|yt, Y1:t−1)dst−1

=

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1.

21

The first equality uses (43). The second equality follows from the invariance property (42)

and for the third equality we used (43) again. Thus, under suitable regularity conditions,

term II also converges to zero almost surely, which leads to the convergence in (39).

We can deduce from Lemmas 1 and 2 that we obtain almost-sure approximations of the

likelihood increment for every period t = 1, . . . , T . Because T is fixed and pNφ(yt|Y1:t−1) =

p(yt|Y1:t−1), we obtain the following Theorem:

Theorem 1 Consider the nonlinear state-space model (1) with Gaussian measurement er-

rors. Suppose that the initial particles are generated by iid sampling from p(s0). Then the

Monte Carlo approximation of the likelihood function generated by Algorithms 1, 4, 5 is

consistent:

p̂M(Y1:T) =
T∏
t=1

p̂M(yt|Y1:t−1)
a.s.−→

T∏
t=1

p1(yt|Y1:t−1)

Nφ∏
n=2

pn(yt|Y1:t−1)

pn−1(yt|Y1:t−1)

 = p(Y1:T). (45)

3.2 Unbiasedness

Particle filter approximations of the likelihood function are often embedded into posterior

samplers for the parameter vector θ, e.g., a Metropolis-Hastings algorithm or a sequential

Monte Carlo algorithm; see Herbst and Schorfheide (2015) for a discussion and further

references in the context of DSGE models. A necessary condition for the convergence of the

posterior sampler is that the likelihood approximation of the particle filter is unbiased.

Theorem 2 Suppose that the tempering schedule is deterministic and that the number of

stages Nφ is the same for each time period t ≥ 1. Then, the particle filter approximation of

the likelihood generated by Algorithm 1 is unbiased:

E
[
p̂M(Y1:T |θ)

]
= E

 T∏
t=1

 Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nt W j,n−1
t

) = p(Y1:T |θ). (46)

A proof of Theorem 2 unbiasedness is provided in the Online Appendix. Our proof ex-

ploits the recursive structure of the algorithm and extends the proof by Pitt, Silva, Giordani,

and Kohn (2012) to account for the tempering iterations.

22

4 DSGE Model Applications

In this section, we assess the performance of the tempered particle filter (TPF) and the

bootstrap particle filter (BSPF). The principle point of comparison is the accuracy of the

approximation of the likelihood function, though we will also assess each filter’s ability to

track the filtered states. We consider two models in the subsequent analysis. The first is

a small-scale New Keynesian DSGE model that comprises a consumption Euler equation, a

New Keynesian Phillips curve, a monetary policy rule, and three exogenous shock processes.

The second model is the medium-scale DSGE model by Smets and Wouters (2007), which

is the core of many of the models that are being used in academia and at central banks.

While the exposition of the algorithms in this paper focuses on the nonlinear state-space

model (1), the numerical illustrations are based on linearized versions of the DSGE models.

Linearized DSGE models (with normally distributed innovations) lead to a linear Gaussian

state-space representation. This allows us to use the Kalman filter to compute the exact

values of the likelihood function p(Y1:T |θ) and the filtered states E[st|Y1:t, θ].

We assess the accuracy of the particle filter approximations by running the filters repeat-

edly and studying the sampling distribution of their output across independent runs. To

evaluate the accuracy of p̂M(Y1:T |θ) we consider two statistics. The first is the log likelihood

approximation error,

∆̂1 = ln p̂M(Y1:T |θ)− ln p(Y1:T |θ). (47)

Because the particle filter approximation of the likelihood function is unbiased (see Theo-

rem 2), Jensen’s inequality applied to the concave logarithmic transformation implies that

the expected value of ∆̂1 is negative. Second, we consider the following statistic:7

∆̂2 =
p̂M(Y1:T |θ)
p(Y1:T |θ)

− 1 = exp[ln p̂M(Y1:T |θ)− ln p(Y1:T |θ)]− 1. (48)

The computation of ∆̂2 requires us to exponentiate the difference in log-likelihood values,

which is feasible if the particle filter approximation is reasonably accurate. The unbiasedness

result implies that the sampling mean of ∆̂2 should be close to zero.

In our experiments, we run the filters Nrun = 100 times and examine the sampling

properties of the discrepancies ∆̂1 and ∆̂2. Because there is always a trade-off between

accuracy and speed, we also assess the run-time of the filters. The run-time of any particle

7Assessing the bias of the likelihood function p̂M (Y1:T |θ) directly, is numerically challenging, because
exponentiating a log-likelihood value of around −300 leads to a missing value using standard software.

23

filter is sensitive to the exact computing environment used. Thus, we provide details about

the implementation in the Online Appendix. In this regard, it is important to note that

the tempered particle filter is designed to work with a small number of particles (i.e., on a

desktop computer.) Therefore we restrict the computing environment to a single machine

and we do not try to leverage large-scale parallelism via a computing cluster, as in Gust,

Herbst, Lopez-Salido, and Smith (2016). Results for the small-scale New Keynesian DSGE

model are presented in Section 4.1. In Section 4.2 the tempered particle filter is applied to

the Smets-Wouters model.

4.1 A Small Scale DSGE Model

We first use the BSPF and the TPF to evaluate the likelihood function associated with

the small-scale New Keynesian DSGE model used in Herbst and Schorfheide (2015). The

details about the model can be found in the Online Appendix. From the perspective of the

particle filter, the key feature of the model is that it has three observables (output growth,

inflation, and the federal funds rate). To facilitate the use of particle filters, we augment

the measurement equation of the DSGE model by independent measurement errors, whose

standard deviations we set to be 20% of the standard deviation of the observables.8

Great Moderation Sample. The data span 1983Q1 to 2002Q4, for a total of 80 obser-

vations for each series. We assess the performance of the particle filters for two parameter

vectors, which are denoted by θm and θl and tabulated in Table 1. The value θm is chosen

as a high likelihood point, close the posterior mode of the model. The log likelihood at θm

is ln p(Y |θm) = −306.49. The second parameter value, θl, is chosen to be associated with a

lower log-likelihood value. Based on our choice, ln p(Y |θl) = −313.36. The sample and the

parameter values are identical to those used in Chapter 8 of Herbst and Schorfheide (2015).

We compare the BSPF with two variants of the TPF which differ with respect to the

targeted inefficiency ratio: r∗ = 2 and r∗ = 3. For the BSPF we use M = 40, 000 particles

and for the TPF we consider M = 4, 000 and M = 40, 000 particles, respectively. In

Algorithm 3 we use NMH = 1 Metropolis-Hastings steps and set the initial scale of the

proposal covariance matrix to c∗ = 0.3.

Figure 1 displays density estimates for the sampling distribution of ∆̂1 associated with

each particle filter for θ = θm (left panel) and θ = θl (right panel). For θ = θm, the

8The measurement error standard deviations are 0.1160 for output growth, 0.2942 for inflation, and 0.4476
for the interest rates.

24

Table 1: Small-Scale Model: Parameter Values

Parameter θm θl Parameter θm θl

τ 2.09 3.26 κ 0.98 0.89
ψ1 2.25 1.88 ψ2 0.65 0.53
ρr 0.81 0.76 ρg 0.98 0.98
ρz 0.93 0.89 r(A) 0.34 0.19
π(A) 3.16 3.29 γ(Q) 0.51 0.73
σr 0.19 0.20 σg 0.65 0.58
σz 0.24 0.29 ln p(Y |θ) -306.5 -313.4

Figure 1: Small-Scale Model: Distribution of Log-Likelihood Approximation Errors

θ = θm θ = θl

−10 −8 −6 −4 −2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

TPF (r ∗ = 2), M = 40000

TPF (r ∗ = 2), M = 4000

TPF (r ∗ = 3), M = 40000

TPF (r ∗ = 3), M = 4000

BSPF , M = 40000

−15 −10 −5 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
D

en
si

ty

TPF (r ∗ = 2)M = 40000

TPF (r ∗ = 2), M = 4000

TPF (r ∗ = 3), M = 40000

TPF (r ∗ = 3), M = 4000

BSPF , M = 40000

Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θm) − ln p(Y1:T |θm) based on Nrun = 100 runs of
the particle filter.

TPF (r∗ = 2) with M = 40, 000 (the green line) is the most accurate of all the filters

considered, with ∆̂1 distributed tightly around zero. The distribution of ∆̂1 associated with

TPF (r∗ = 3) with M = 40, 000 is slightly more disperse, with a larger left tail, as the higher

tolerance for particle inefficiency translates into a higher variance for the likelihood estimate.

Reducing the number of particles to M = 4, 000 for both of these filters, results in a higher

variance estimate of the likelihood. The most poorly performing TPF (with r∗ = 3 and

M = 4, 000) is associated with a distribution for ∆̂1 that is similar to the one associated

with the BSPF which uses M = 40, 000. Overall, the TPF compares favorably with the

BSPF when θ = θm.

The performance differences become even more stark when we consider θ = θl; depicted

25

Table 2: Small-Scale Model: PF Summary Statistics

BSPF TPF
Number of Particles M 40,000 4,000 4,000 40,000 40,000
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Bias ∆̂1 -1.44 -0.88 -1.53 -0.31 -0.05

StdD ∆̂1 1.92 1.36 1.69 0.44 0.60

Bias ∆̂2 -0.11 0.10 -0.37 0.05 -0.12

T−1
∑T

t=1Nφ,t 1.00 4.31 3.24 4.31 3.23
Average Run Time (s) 0.81 0.43 0.34 3.98 3.30

Low Posterior Density: θ = θl

Bias ∆̂1 -6.52 -2.05 -3.12 -0.32 -0.64

StdD ∆̂1 5.25 2.10 2.58 0.75 0.98

Bias ∆̂2 2.97 0.36 0.71 -.004 -0.11

T−1
∑T

t=1Nφ,t 1.00 4.36 3.29 4.35 3.28
Average Run Time (s) 1.56 0.41 0.33 3.66 2.87

Notes: The results are based on Nrun = 100 independent runs of the particle filters. The
likelihood discrepancies ∆̂1 and ∆̂2 are defined in (47) and (48).

in the right panel of Figure 1. While the sampling distributions indicate that the likelihood

estimates are less accurate for all the particles filters, the BSPF deteriorates by the largest

amount. The TPF, by targeting an inefficiency ratio, adaptively adjust to account for the

for relatively worse fit of θl.

The results are also born out in Table 2, which displays summary statistics for the two

types of likelihood approximation errors as well as information about the average number of

stages and run time of each filter. The results for ∆̂1 convey essentially the same story as

Figure 1. The bias associated with ∆̂2 highlights the performance deterioration associated

with the BSPF when considering θ = θl. The bias of almost 3 is substantially larger than

for any of the TPFs.

The row labeled T−1
∑T

t=1Nφ,t shows the average number of tempering iterations asso-

ciated with each particle filter. The BSPF has, by construction, always an average of one.

When r∗ = 2, the TPFs use about 4 stages per time period. With a higher tolerance for

inefficiency, when r∗ = 3, that number falls to just above 3. Note that when considering

θl, the TPF always uses a greater number of stages, reflecting the relatively worse fit of the

model under θ = θl compared to θ = θm. Table 2 also displays the average run time of each

26

Figure 2: Small-Scale Model: Accuracy of Filtered State

1984 1989 1994 1999
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BSPF, M=40k
TPF(r*=2), M=40k
TPF(r*=3), M=40k

TPF(r*=2), M=4k
TPF(r*=3), M=4k

Notes: The figure depicts RMSEs associated with Ê[ĝt|Y1:t]. Results are based on Nrun = 100
independent runs of the particle filters.

filter (in seconds).9 When using the same number of particles, the BSPF runs much more

quickly than the TPFs, reflecting the fact that the additional tempering iterations require

many more likelihood evaluations, in addition to the computational costs associated with

the mutation phase. For a given level of accuracy, however, the TPF requires many fewer

particles. For instance, using M = 4, 000, the TPF yields more precise likelihood estimates

than the BSPF using M = 40, 000 and takes about half as much time to run.

Finally, we consider the accuracy of the filtered state estimates. We consider the la-

tent government spending shock as a prototypical hidden state. Using the Kalman filter we

can compute E[ĝt|Y1:T], which we compare to the particle filter approximation, denoted by

Ê[ĝt|Y1:T]. Figure 2 plots root-mean-squared errors (RMSEs) for Ê[ĝt|Y1:T]. The ranking of

the filters is consistent with the ranking based on the accuracy of the likelihood approxima-

tions. The BSPF performs the worst. Using the TPF with M = 40, 000 particles reduces

the RMSE roughly by a factor of three.

Great Recession Sample. It is well known that the BSPF is very sensitive to outliers.

To examine the extent to which this is also true for the tempered particle filter, we re-run

the above experiments on the sample 2003Q1 to 2013Q4. This period includes the Great

Recession, which was a large outlier from the perspective of the small-scale DSGE model

9The run times are stochastic. In principle, there should be no difference in running the BSPF on the two
parameters. However, in practice, there were a few runs that took significantly longer, which contaminated
the average reported in the table.

27

Figure 3: Small-Scale Model: Distribution of Log-Likelihood Approximation Errors, Great
Recession Sample

θ = θm θ = θl

−350 −300 −250 −200 −150 −100 −50 0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

TPF (r ∗ = 2), M = 40000

TPF (r ∗ = 2), M = 4000

TPF (r ∗ = 3), M = 40000

TPF (r ∗ = 3), M = 4000

BSPF , M = 40000

−350 −300 −250 −200 −150 −100 −50 0
0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

TPF (r ∗ = 2), M = 40000

TPF (r ∗ = 2), M = 4000

TPF (r ∗ = 3), M = 40000

TPF (r ∗ = 3), M = 4000
BSPF , M = 40000

Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θm) − ln p(Y1:T |θm) based on Nrun = 100 runs of
the particle filters.

(and most other econometric models).

Figure 3 plots the density of the approximation errors of the log likelihood estimates

associated with each of the filters. The difference in the distribution of approximation errors

between the BSPF and the TPFs is massive. For θ = θm and θ = θl, the approximation

errors associated with the BSPF are concentrated in the range of -200 to -300, almost two

orders of magnitude larger than the errors associated with the TPFs. This happens because

the large drop in output in 2008Q4 is not predicted by the forward simulation in the BSPF.

In turn, the filter collapses, in the sense that the likelihood increment in that quarter is

estimated using essentially only one particle.

Table 3 tabulates the results for each of the filters. Consistent with Figure 3 the bias

associated with the log likelihood estimate is −215 and −279 for θ = θm and θ = θl,

respectively, compared to about −8 and −10 for the worst performing TPF. For θ = θm,

the TPF (r∗ = 2) with M = 40, 000 has a bias only of −2.8 with a standard deviation of

1.5, which is about 25 times smaller than the BSPF. It is true that this variant of the filter

takes about 6 times longer to run than the BSPF, but even when considering M = 4, 000

particles, the TPF estimates are still overwhelmingly more accurate – and are computed

more quickly – than the BSPF estimates. A key driver of this result is the adaptive nature

of the tempered particle filter. While the average number of stages used is about 5 for r∗ = 2

and 4 for r∗ = 3, for t = 2008Q4 – the period with the largest outlier – the tempered particle

28

Table 3: Small-Scale Model: PF Summary Statistics – The Great Recession

BSPF TPF
Number of Particles M 40,000 4,000 4,000 40,000 40,000
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Bias ∆̂1 -215.63 -5.93 -7.91 -2.84 -4.27

StdD ∆̂1 36.74 3.01 3.36 1.55 1.80

Bias ∆̂2 -1.00 -0.85 -0.95 -0.71 -0.91

T−1
∑T

t=1Nφ,t 1.00 5.12 3.87 5.08 3.86
Average Run Time (s) 0.38 0.28 0.18 2.28 2.09

Low Posterior Density: θ = θl

Bias ∆̂1 -279.12 -7.26 -9.98 -3.81 -5.82

StdD ∆̂1 41.74 3.44 4.22 1.68 2.15

Bias ∆̂2 -1.00 -0.89 -0.99 -0.86 -0.98

T−1
∑T

t=1Nφ,t 1.00 5.36 4.04 5.33 4.03
Average Run Time (s) 0.37 0.29 0.23 2.40 2.10

Notes: The results are based on Nrun = 100 independent runs of the particle filters. The
likelihood discrepancies ∆̂1 and ∆̂2 are defined in (47) and (48).

Figure 4: Small-Scale Model: BSPF versus TPF in 2008Q4

BSPF TPF

4 3 2 1 0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Forecast Density
BSPF Filtered Density
True Filtered Density

−4 −3 −2 −1 0 1 2
φn

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Notes: Left panel: forecast density p̂(st|Y1:t−1), BSPF filtered density p̂(st|Y1:t), and true
filtered density p(st|Yt−1) where st equals model-implied output growth and t = 2008Q4.
Right panel: forecast density p̂(st|Y1:t−1) (blue), waterfall plot of density estimates p̂n(st|Y1:t)
for n = 1, . . . , Nφ, and true filtered density p(st|Y1:t) (red).

filter uses about 15 stages, on average.

29

Figure 4 provides an illustration of why the TPF provides much more accurate approxima-

tions than the BSPF. We focus on one particular state, namely model-implied output growth,

which is observed output growth minus its measurement error. We focus on t = 2008Q4. The

left panel depicts the BSPF approximations p̂(st|Y1:t−1) and p̂(st|Y1:t) as well as the “true”

density p(st|Y1:t). The BSPF essentially generates draws from the forecast density p̂(st|Y1:t−1)

and reweights them to approximate the density p(st|Y1:t). In 2008Q4, these densities have

very little overlap. This implies that essentially one draw from the forecast density receives

all the weight and the BSPF filtered density is a point mass. This point mass provides a

poor approximation of p(st|Y1:t).

The right panel of Figure 4 displays a waterfall plot of density estimates p̂n(st|Y1:t) for

n = 1, . . . , Nφ = 15. The densities are placed on the y-axis at the corresponding value of

φn. The first iteration in the tempering phase has φ1 = 0.002951, which corresponds to an

inflation of the measurement error variance by a factor over 300. This density looks similar

to the predictive distribution p(st|Y1:t−1), with a 1-step-ahead prediction for output growth

of about −1% (in quarterly terms). As we move through the iterations, φn increases slowly

at first and p̂n(st|Y1:t) gradually adds more density where st ≈ −2.5. Each correction step of

Algorithm 2 requires only modest reweighting of the particles and the mutation steps refresh

the particle values. The filter begins to tolerate relatively large changes from φn to φn+1,

as more particles lie in this region, needing only three stages to move from φn ≈ 0.29 to

φN = 1. Alongside p̂Nφ(st|Y1:t) we also show the true filtered density in red, obtained from

the Kalman filter recursions. The TPF approximation at n = Nφ matches the true density

extremely well.

4.2 The Smets-Wouters Model

We next assess the performance of the tempered particle filter for the Smets and Wouters

(2007), henceforth SW, model. This model forms the core of the latest vintage of DSGE

models. While we leave the details of the model to the Online Appendix, it is important

to note that the SW model is estimated over the period 1966Q1 to 2004Q4 using seven

observables: the real per capita growth rates of output, consumption, investment, wages;

hours worked, inflation, and the federal funds rate. Moreover, the SW model has a high-

dimensional state space st with more than a dozen state variables. The performance of the

BSPF deteriorates quickly due to the increased state space and the fact that it is much more

difficult to predict seven observables than it is to predict three observables with a DSGE

30

Table 4: SW Model: Parameter Values

θm θl θm θl

β̃ 0.159 0.182 π̄ 0.774 0.571
l̄ −1.078 0.019 α 0.181 0.230
σ 1.016 1.166 Φ 1.342 1.455
ϕ 6.625 4.065 h 0.597 0.511
ξw 0.752 0.647 σl 2.736 1.217
ξp 0.861 0.807 ιw 0.259 0.452
ιp 0.463 0.494 ψ 0.837 0.828
rπ 1.769 1.827 ρ 0.855 0.836
ry 0.090 0.069 r∆y 0.168 0.156
ρa 0.982 0.962 ρb 0.868 0.849
ρg 0.962 0.947 ρi 0.702 0.723
ρr 0.414 0.497 ρp 0.782 0.831
ρw 0.971 0.968 ρga 0.450 0.565
µp 0.673 0.741 µw 0.892 0.871
σa 0.375 0.418 σb 0.073 0.075
σg 0.428 0.444 σi 0.350 0.358
σr 0.144 0.131 σp 0.101 0.117
σw 0.311 0.382 ln p(Y |θ) −943.0 −956.1

Notes: β̃ = 100(β−1 − 1).

model. As a consequence, the estimation of nonlinear variants of the SW model has proven

extremely difficult.

We compute the particle filter approximations conditional on two sets of parameter val-

ues, θm and θl, which are summarized in Table 4. θm is the parameter vector associated with

the highest likelihood value among the draws that we generated with a posterior sampler.

θl is a parameter vector that attains a lower likelihood value. The log-likelihood difference

between the two parameter vectors is approximately 13. The standard deviations of the

measurement errors are chosen to be approximately 20% of the sample standard deviation

of the time series.10 For comparison purposes, the parameter values and the data are iden-

tical to the ones used in Chapter 8 of Herbst and Schorfheide (2015). We run each filter

Nrun = 100 times.

Figure 5 displays density estimates of the approximation errors associated with the log

10The standard deviations for the measurement errors are: 0.1731 (output growth), 0.1394 (consumption
growth), 0.4515 (investment growth), 0.1128 (wage growth), 0.5838 (log hours), 0.1230 (inflation), 0.1653
(interest rates).

31

Figure 5: Smets-Wouters Model: Distribution of Log-Likelihood Approximation Errors

θ = θm θ = θl

−700 −600 −500 −400 −300 −200 −100 0 100
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

D
en

si
ty

TPF (r ∗ = 2), M = 40000

TPF (r ∗ = 2), M = 4000

TPF (r ∗ = 3), M = 40000

TPF (r ∗ = 3), M = 4000

BSPF , M = 40000

−600 −500 −400 −300 −200 −100 0 100 200
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

D
en

si
ty

TPF (r ∗ = 2), M = 40000

TPF (r ∗ = 2), M = 4000

TPF (r ∗ = 3), M = 40000

TPF (r ∗ = 3), M = 4000

BSPF , M = 40000

Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θm) − ln p(Y1:T |θm) based on Nrun = 100 runs of
the particle filters.

likelihood estimates under θ = θm and θ = θl. We use M = 40, 000 particles for the BSPF.

For the TPF we use M = 4, 000 or M = 40, 000 and consider r∗ = 2 and r∗ = 3. Moreover,

in the mutation step (Algorithm 3) we set NMH = 1 and c∗ = 0.3. Under both parameter

values, the BSPF exhibits the most bias, with its likelihood estimates substantially below

the true likelihood value. The distribution of the bias falls mainly between -400 and -100.

This means that eliciting the posterior distribution of the SW model using, for example, a

particle Markov chain Monte Carlo algorithm with likelihood estimates from the bootstrap

particle filter would be nearly impossible. The TPFs perform better, although they also

underestimate the likelihood by a large amount.

Table 5 underscores the results in Figure 5. The best-performing TPF, while three to four

times more accurate than the BSPF, still generates a bias in the log-likelihood approximation

of about −55 and a standard deviation of about 21 for θ = θm. Moreover, this increased

performance comes at a cost: the TPF (r∗ = 2),M = 40, 000 filter takes about 29 seconds,

while the BSPF takes only 4 seconds. Even the variants of the TPF, which run more quickly

than the BSPF, still have wildly imprecise estimates of the likelihood; though, to be sure,

these estimates are in general better than those of the BSPF.

It is well known that in sequential Monte Carlo algorithms for static parameters the

mutation phase is crucial. For example, Bognanni and Herbst (2015) show that tailoring

the mutation step to model can substantially improve performance. The modification of the

mutation step is not immediately obvious. One clear way to allow the particles to better

32

Table 5: SW Model: PF Summary Statistics

BSPF TPF
Number of Particles M 40,000 4,000 4,000 40,000 40,000
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Bias ∆̂1 -235.50 -126.09 -144.57 -55.71 -65.94

StdD ∆̂1 60.30 46.55 44.32 20.73 23.81

Bias ∆̂2 -1.00 -1.00 -1.00 -1.00 -1.00

T−1
∑T

t=1Nφ,t 1.00 6.19 4.75 6.14 4.71
Average Run Time (s) 4.28 2.75 2.11 28.83 22.40

Low Posterior Density: θ = θl

Bias ∆̂1 -263.31 -138.69 -168.76 -66.92 -83.08

StdD ∆̂1 78.14 48.18 50.15 24.26 29.14

Bias ∆̂2 -1.00 -1.00 -1.00 -1.00 -1.00

T−1
∑T

t=1Nφ,t 1.00 6.25 4.81 6.21 4.78
Average Run Time (s) 4.17 2.34 2.16 26.01 20.14

Notes: The likelihood discrepancies ∆̂1 and ∆̂2 are defined in (47) and (48). Results are
based on Nrun = 100 runs of the particle filters.

adapt to the current density is to increase the number of Metropolis-Hastings steps. While

all of the previous results are based on NMH = 1, we now consider NMH = 10. Table

6 displays the results associated with this choice for variants of the TPF, along with the

BSPF, which is unchanged the previous exercise.

The bias shrinks dramatically. For the TPF (r∗ = 2),M = 40, 000, when θ = θm, the bias

falls from about −55 to about −6, with the standard deviation of the estimator decreasing

by a factor of 6. Of course this increase in performance comes at a computational cost.

Each filter takes about three times longer than their NMH = 1 counterpart. Note that this

is less than you might expect, given the fact the number of Metropolis-Hastings steps at

each iteration has increased by 10. This reflects two things. First, the mutation phase is

easily parallelizable on a multi-core desktop computer. Second, a substantial fraction of

computational time is spent during the resampling (selection) phase, which is not affected

by increasing the number of Metropolis-Hastings steps.

33

Table 6: SW Model: PF Summary Statistics (NMH = 10)

BSPF TPF
Number of Particles M 40,000 4,000 4,000 40,000 40,000
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Bias ∆̂1 -235.50 -21.06 -25.20 -6.45 -9.00

StdD ∆̂1 60.30 10.55 11.92 4.01 5.55

Bias ∆̂2 -1.00 -1.00 -1.00 1.32 -0.61

T−1
∑T

t=1Nφ,t 1.00 6.11 4.69 6.07 4.69
Average Run Time (s) 3.92 8.45 6.07 81.70 62.33

Low Posterior Density: θ = θl

Bias ∆̂1 -263.31 -26.41 -34.48 -9.66 -13.72

StdD ∆̂1 78.14 10.85 12.66 5.51 6.31

Bias ∆̂2 -1.00 -1.00 -1.00 0.17 -0.66

T−1
∑T

t=1Nφ,t 1.00 6.16 4.74 6.14 4.71
Average Run Time (s) 3.69 7.76 6.56 80.52 62.97

Notes: The likelihood discrepancies ∆̂1 and ∆̂2 are defined in (47) and (48). Results are
based on Nrun = 100 runs of the particle filters.

5 Conclusion

We developed a particle filter that automatically adapts the proposal distribution for the

particles sjt to the current observation yt. We start with a forward simulation of the state-

transition equation under an inflated measurement error variance and then gradually reduc-

ing the variance to its nominal level. In each step, the particle values and weights change

so that the distribution slowly adapts to p(sjt |yt, sjt−1). We demonstrate that the algorithm

improves upon the standard bootstrap particle filter, in particular in instances in which the

model generates very inaccurate one-step-ahead predictions of yt. The tempering iterations

can also be used to improve a particle filter with a more general initial proposal distribution

than the BSPF. Morever, our filter can be easily embedded in particle MCMC algorithms.

References

Andreasen, M. M. (2013): “Non-Linear DSGE Models and the Central Difference Kalman

Filter,” Journal of Applied Econometrics, 28(6), 929–955.

34

Andrieu, C., A. Doucet, and R. Holenstein (2010): “Particle Markov Chain Monte

Carlo Methods,” Journal of the Royal Statistical Society Series B, 72(3), 269–342.

Arulampalam, S., S. Maskell, N. Gordon, and T. Clapp (2002): “A Tutorial on

Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transac-

tions on Signal Processing, 50(2), 174–188.

Bognanni, M., and E. P. Herbst (2015): “Estimating (Markov-Switching) VAR Models

without Gibbs Sampling: A Sequential Monte Carlo Approach,” FEDS, 2015(116), 154.

Cappé, O., S. J. Godsill, and E. Moulines (2007): “An Overview of Existing Methods

and Recent Advances in Sequential Monte Carlo,” Proceedings of the IEEE, 95(5), 899–

924.

Cappé, O., E. Moulines, and T. Ryden (2005): Inference in Hidden Markov Models.

Springer Verlag.

Chopin, N. (2002): “A Sequential Particle Filter for Static Models,” Biometrika, 89(3),

539–551.

(2004): “Central Limit Theorem for Sequential Monte Carlo Methods and its

Application to Bayesian Inference,” Annals of Statistics, 32(6), 2385–2411.

Creal, D. (2007): “Sequential Monte Carlo Samplers for Bayesian DSGE Models,”

Manuscript, University Chicago Booth.

(2012): “A Survey of Sequential Monte Carlo Methods for Economics and Finance,”

Econometric Reviews, 31(3), 245–296.

Del Moral, P. (2013): Mean Field Simulation for Monte Carlo Integration. Chapman &

Hall/CRC.

Doucet, A., and A. M. Johansen (2011): “A Tutorial on Particle Filtering and Smooth-

ing: Fifteen Years Later,” in Handook of Nonlinear Filtering, ed. by D. Crisan, and B. Ro-

zovsky. Oxford University Press.

Durham, G., and J. Geweke (2014): “Adaptive Sequential Posterior Simulators for

Massively Parallel Computing Environments,” in Advances in Econometrics, ed. by I. Jeli-

azkov, and D. Poirier, vol. 34, chap. 6, pp. 1–44. Emerald Group Publishing Limited.

35

Fernández-Villaverde, J., and J. F. Rubio-Raḿırez (2007): “Estimating Macroeco-

nomic Models: A Likelihood Approach,” Review of Economic Studies, 74(4), 1059–1087.

Geweke, J., and B. Frischknecht (2014): “Exact Optimization By Means of Sequen-

tially Adaptive Bayesian Learning,” Mimeo.

Gordon, N., D. Salmond, and A. F. Smith (1993): “Novel Approach to Nonlinear/Non-

Gaussian Bayesian State Estimation,” Radar and Signal Processing, IEE Proceedings F,

140(2), 107–113.

Gust, C., E. Herbst, D. Lopez-Salido, and M. E. Smith (2016): “The Empirical

Implications of the Interest-Rate Lower Bound,” Manuscript, Federal Reserve Board.

Herbst, E., and F. Schorfheide (2014): “Sequential Monte Carlo Sampling for DSGE

Models,” Journal of Applied Econometrics, 19(7), 1073–1098.

(2015): Bayesian Estimation of DSGE Models. Princeton University Press, Prince-

ton.

Kollmann, R. (2015): “Tractable Latent State Filtering for Non-Linear DSGE Models

Using a Second-Order Approximation and Pruning,” Computational Economics, 45(2),

239–260.

Liu, J. S. (2001): Monte Carlo Strategies in Scientific Computing. Springer Verlag.

Pitt, M. K., R. d. S. Silva, P. Giordani, and R. Kohn (2012): “On Some Properties

of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter,” Journal

of Econometrics, 171, 134–151.

Smets, F., and R. Wouters (2007): “Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach,” American Economic Review, 97, 586–608.

White, H. (2001): Asymptotic Theory For Econometricians. Academic Press.

Online Appendix A-1

Online Appendix for

Tempered Particle Filtering

Edward Herbst and Frank Schorfheide

A Theoretical Derivations

A.1 Monotonicity of Inefficiency Ratio

Recall the definitions

ej,t =
1

2
(yt −Ψ(sj,n−1

t , t; θ))′Σ−1
u (yt −Ψ(sj,n−1

t , t; θ))

and

w̃j,nt (φn) =

(
φn
φn−1

)d/2
exp[−(φn − φn−1)ej,t].

Provided that the particles had been resampled and W j,n−1
t = 1, the inefficiency ratio can

be manipulated as follows:

InEff(φn) =
1
M

∑M
j=1

(
w̃j,nt (φn)

)2(
1
M

∑M
j=1 w̃

j,n
t (φn)

)2

=

1
M

∑M
j=1

(
φn
φn−1

)d
exp[−2(φn − φn−1)ej,t](

1
M

∑M
j=1

(
φn
φn−1

)d/2
exp[−(φn − φn−1)ej,t]

)2

=
1
M

∑M
j=1 exp[−2(φn − φn−1)ej,t](

1
M

∑M
j=1 exp[−(φn − φn−1)ej,t]

)2

=
A1(φn)

A2(φn)
.

Note that for φn = φn−1 we obtain ESS(φn) = 1. We now will show that the inefficiency

ratio is monotonically increasing on the interval [φn−1, 1]. Differentiating with respect to φn

Online Appendix A-2

yields

InEff(1)(φn) =
A(1)(φn)A2(φn)− A1(φn)A

(1)
2 (φn)

[A2(φn)]2
,

where

A(1)(φn) = − 2

M

M∑
j=1

ej,t exp[−2(φn − φn−1)ej,t]

A(2)(φn) =

(
2

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)(
− 1

M

M∑
j=1

ej,t exp[−(φn − φn−1)ej,t]

)
.

The denumerator in InEff(1)(φn) is always non-negative and strictly different from zero. Thus,

we can focus on the numerator:

A(1)(φn)A2(φn)− A1(φn)A
(1)
2 (φn)

=

(
− 2

M

M∑
j=1

ej,t exp[−2(φn − φn−1)ej,t]

)(
1

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)2

−
(

1

M

M∑
j=1

exp[−2(φn − φn−1)ej,t]

)(
2

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)

×
(
− 1

M

M∑
j=1

ej,t exp[−(φn − φn−1)ej,t]

)

= 2

(
1

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)

×
[(

1

M

M∑
j=1

ej,t exp[−(φn − φn−1)ej,t]

)(
1

M

M∑
j=1

exp[−2(φn − φn−1)ej,t]

)

−
(

1

M

M∑
j=1

ej,t exp[−2(φn − φn−1)ej,t]

)(
1

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)]

To simplify the notation we now define

xj,t = exp[−(φn − φn−1)ej,t].

Online Appendix A-3

Note that 0 < xj,t ≤ 1, which implies that x2
j,t ≤ xj,t. Moreover, ej,t ≥ 0. We will use these

properties to establish the following bound:

A(1)(φn)A2(φn)− A1(φn)A
(1)
2 (φn)

= 2

(
1

M

M∑
j=1

xj,t

)[(
1

M

M∑
j=1

ej,txj,t

)(
1

M

M∑
j=1

x2
j,t

)
−
(

1

M

M∑
j=1

ej,tx
2
j,t

)(
1

M

M∑
j=1

xj,t

)]

≥ 2

(
1

M

M∑
j=1

xj,t

)[(
1

M

M∑
j=1

ej,txj,t

)(
1

M

M∑
j=1

x2
j,t

)
−
(

1

M

M∑
j=1

ej,tx
2
j,t

)(
1

M

M∑
j=1

x2
j,t

)]

= 2

(
1

M

M∑
j=1

xj,t

)(
1

M

M∑
j=1

x2
j,t

)[(
1

M

M∑
j=1

ej,txj,t

)
−
(

1

M

M∑
j=1

ej,tx
2
j,t

)]
≥ 0.

We conclude that the inefficiency ratio InEff(φn) in increasing in φn. �

A.2 Proofs for Section 3.1

The proofs in this section closely follow Chopin (2004) and Herbst and Schorfheide (2014).

Throughout this section we will assume that h(θ) is scalar and we use absolute values |h|
instead of a general norm ‖h‖. Extensions to vector-valued h functions are straightforward.

We use C to denote a generic constant. We will make repeated use of the following moment

bound for r > 1

E
[∣∣X − E[X]

∣∣r] ≤ Cr
(
E
[∣∣X∣∣r]+

∣∣E[X]
∣∣r) (A.1)

≤ 2CrE
[∣∣X∣∣r],

where Cr = 1 for r = 1 and Cr = 2r−1 for r > 1. The first inequality follows from the Cr

inequality and the second inequality follows from Jensen’s inequality.

We will make use of the following SLLN (Markov, see White (2001) p. 33): Let {Zj} be

a sequence of independent random variables with finite means µj = E[Zj]. If for some δ > 0,∑∞
j=1 E

[
|Zj − µj|1+δ

]
/j1+δ < ∞, then 1

M

∑M
j=1 Zj − µj

a.s−→ 0. Note that E
[
|Zj − µj|1+δ

]
<

C <∞ implies that the summability condition is satisfied because
∑∞

j=1(1/j)1+δ <∞.

Online Appendix A-4

Recall that under a multivariate Gaussian measurement error distribution, the density

pn(yt|st) can be bounded from above. Thus, pn(yt|st) ∈ Hñ
t̃

and ω̃j,nt ∈ Hñ
t̃

for any t̃ and ñ.

Moreover, for any h(st, st−1) ∈ Hn
t we can deduce that h̃(·) = h(·)ω̃j,nt ∈ Hn

t .

Proof of Lemma 1. (i) (30) can be established as follows. Consider the summands I and

II in (34). Recall that

I =
1

M

M∑
j=1

(
h(s̃jt , s

j,Nφ
t−1)− Ep(·|sjt−1)[h]

)
W

j,Nφ
t−1 .

Conditional on the particles {sj,Nφt−1 ,W
j,Nφ
t−1 } the summands in term I form a triangular array

of mean-zero random variables that within each row are independently distributed. In Al-

gorithm 4 the particles were resampled during the t − 1 tempering iteration Nφ, such that

W
Nφ
t−1 = 1. Using the bound

Ep(·|st−1)

[∣∣h(st, st−1)− Ep(·|st−1)[h(st, st−1)]
∣∣1+δ

]
< C <∞

implied by the definition of H1
t we can apply the SLLN to deduce that term I

a.s.−→ 0. The

second term in (34) takes the form

II =
1

M

M∑
j=1

(
Ep(·|sjt−1)[h]−

∫ ∫
h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1

)
.

By assumption, Ep(·|st−1)[h] ∈ HNφ
t−1. The almost-sure convergence to zero of term II can now

be deduced from the recursive Assumption (29). By combining the convergence results for

terms I and II we have established (30).

(ii) The convergences in (31) and (33) follow immediately from the fact that p1(yt|st) ∈
H1
t . Moreover, if h(st, st−1) ∈ H1

t , then h(st, st−1)p1(yt|st) ∈ H1
t . Finally, p1(yt|st) > 0,

which implies that the almost-sure limit of the denominator in (31) is strictly positive.

(iii) To verify (32), let F̃t,1,M denote the σ-algebra generated by the particles {s̃j,1t , s
j,Nφ
t−1 ,W

j,1
t }.

Online Appendix A-5

Moreover, define

E[h|F̃t,1,M] =
1

M

M∑
j=1

h(s̃j,1t , s
j,Nφ
t−1)W̃ j,1

t ,

and write

h̄1
t,M −

∫
h(st, st−1)p1(st, st−1|Y1:t)dst (A.2)

=
1

M

M∑
j=1

(
h(sj,1t , s

j,Nφ
t−1)− E[h|F̃t,1,M]

)
+

(
1

M

M∑
j=1

h(s̃j,1t , s
Nφ
t−1)W̃ j,1

t −
∫ ∫

h(st, st−1)p1(st, st−1|Y1:t)dstdst−1

)

=
1

M

M∑
j=1

(
h(sj,1t , s

j,Nφ
t−1)− E[h|F̃t,1,M]

)
+

(
h̃1
t,M −

∫ ∫
h(st, st−1)p1(st, st−1|Y1:t)dstdst−1

)
= I + II.

From (31), we can immediately deduce that term II converges to zero almost surely. Re-

call that we are resampling the pairs (s̃j,nt , s
j,Nφ
t−1). Thus, under multinomial resampling the

h(sj,1t , s
j,Nφ
t)’s form a triangular array of iid random variables conditional on F̃t,1,M . Using

Kolmogorov’s SLLN for iid sequences, it suffices to verify for that

E
[∣∣h(sj,1t , s

j,Nφ
t)

∣∣ ∣∣∣∣ F̃t,1,M] <∞.
We can manipulate the moment as follows

E
[∣∣h(sj,1t , s

j,Nφ
t−1)

∣∣ ∣∣∣∣ F̃t,1,M] =
1

M

M∑
j=1

∣∣h(s̃j,1t , s
j,Nφ
t−1)

∣∣W̃ j,1
t

a.s−→
∫ ∣∣h(st, st−1)

∣∣p1(st, st−1|Y1:t)dstdst−1 <∞.

Because h ∈ H1
t implies |h| ∈ H1

t , we obtain the almost sure convergence from (31). �

Proof of Lemma 2. (i) We begin with the correction step. Recall that for any h(st, st−1) ∈

Online Appendix A-6

Hn−1
t :

pn(yt|st)/pn−1(yt|st) ∈ Hn−1
t and h(st, st−1)pn(yt|st)/pn−1(yt|st) ∈ Hn−1

t .

Thus, the recursive Assumption 2 yields the almost-sure convergence in (36) and (38).

(ii) We proceed with the selection step. The convergence in (37) can be established with

an argument similar to the one used in Step (iii) of the proof of Lemma 1.

(iii) Finally, consider the mutation step. To establish the convergence in (39) we need to

construct moment bounds for the terms I and II that appear in (41). Under the assumption

that the resampling step is executed at every iteration n, term I takes the form:

I =
1

M

M∑
j=1

(
h(sj,nt , s

j,Nφ
t−1)− E

Kn(·|ŝj,nt ;s
j,Nφ
t−1)

[h]

)
.

Conditional on the σ-algebra generated by the particles of the selection step, term I is an

average of independently distributed mean-zero random variables. By virtue of h ∈ Hn
t , we

can deduce that, omitting the j and n superscripts,

EKn(·|ŝt;st−1)

[∣∣h(st, st−1)− EKn(·|ŝt;st−1)[h]
∣∣1+δ]

< C <∞.

Therefore, the SLLN implies that I
a.s.−→ 0. For term II, we have

II =
1

M

M∑
j=1

(
E
Kn(·|ŝj,nt ;s

j,Nφ
t−1)

[h]−
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1

)
.

Now define

ψ(ŝt, st−1) = EKn(·|ŝt;st−1)[h].

The definition of Hn
t implies that ψ(ŝt, st−1) ∈ Hn−1

t . Thus, we can deduce from (37) that

II
a.s.−→ 0. �

Online Appendix A-7

A.3 Proofs for Section 3.2

The subsequent proof of the unbiasedness of the particle filter approximation utilizes Lem-

mas 3 and 5 below. Throughout this section, we use the convention that W j,0
t = W

j,Nφ
t−1 .

Moreover, we often use the j subscript to denote a fixed particle as well as a running index

in a summation. That is, we write aj/
∑M

j=1 a
j instead of aj/

∑M
l=1 a

l. We also define the

information set

Ft−1,n,M =
{

(s
j,Nφ
0 ,W

j,Nφ
0), (sj,11 ,W j,1

1), . . . , (s
j,Nφ
1 ,W

j,Nφ
1), . . . , (A.3)

(sj,1t−1,W
j,1
t−1), . . . , (sj,nt−1,W

j,n
t−1)
}M
j=1
.

A.3.1 Additional Lemmas

Lemma 3 Suppose that the incremental weights w̃j,nt are defined as in (7) and (14) and that

there is no resampling. Then

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)
=

1

M

M∑
j=1

 Nφ∏
n=1

w̃j,nT

W
j,Nφ
T−1 (A.4)

and

W
j,Nφ
T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)
=

 Nφ∏
n=1

w̃j,nT−h−1

W
j,Nφ
T−h−2. (A.5)

Proof of Lemma 3. The lemma can be proved by induction. If there is no resampling,

then W j,n
t = W̃ j,n

t .

Part 1. The inductive hypothesis to show (A.4) takes the form

Nφ∏
n=n∗

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)
=

1

M

M∑
j=1

 Nφ∏
n=n∗

w̃j,nT

W j,n∗−1
T . (A.6)

Online Appendix A-8

If the hypothesis is correct, then

Nφ∏
n=n∗−1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)
(A.7)

=

 1

M

M∑
j=1

 Nφ∏
n=n∗

w̃j,nT

W j,n∗−1
T

(1

M

M∑
j=1

w̃j,n∗−1
T W j,n∗−2

T

)

=

 1

M

M∑
j=1

 Nφ∏
n=n∗

w̃j,nT

 w̃j,n∗−1
T W j,n∗−2

T

1
M

∑M
j=1 w̃

j,n∗−1
T W j,n∗−2

T

(1

M

M∑
j=1

w̃j,n∗−1
T W j,n∗−2

T

)

=
1

M

M∑
j=1

 Nφ∏
n=n∗−1

w̃j,nT

W j,n∗−2
T .

The first equality follows from (A.6) and the second equality is obtained by using the defi-

nition of W j,n∗−1
T .

It is straightforward to verify that the inductive hypothesis (A.6) is satisfied for n∗ = Nφ.

Setting n∗ = 1 in (A.6) and noticing that W j,0
T = W

j,Nφ
T−1 leads the desired result.

Part 2. To show (A.5), we can use the inductive hypothesis

W
j,Nφ
T−h−1

Nφ∏
n=n∗

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)
=

 Nφ∏
n=n∗

w̃j,nT−h−1

W j,n∗−1
T−h−1. (A.8)

If the inductive hypothesis is satisfied, then

W
j,Nφ
T−h−1

Nφ∏
n=n∗−1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)
(A.9)

= W
j,Nφ
T−h−1

Nφ∏
n=n∗

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)(
1

M

M∑
j=1

w̃j,n∗−1
T−h−1W

j,n∗−2
T−h−1

)

=

 Nφ∏
n=n∗

w̃j,nT−h−1

 w̃j,n∗−1
T−h−1W

j,n∗−2
T−h−1

1
M

∑M
j=1 w̃

j,n∗−1
T−h−1W

j,n∗−2
T−h−1

(
1

M

M∑
j=1

w̃j,n∗−1
T−h−1W

j,n∗−2
T−h−1

)

=

 Nφ∏
n=n∗−1

w̃j,nT−h−1

W j,n∗−2
T−h−1.

Online Appendix A-9

For n∗ = Nφ the validity of the inductive hypothesis can be verified as follows:

W
j,Nφ
T−h−1

(
1

M

M∑
j=1

w̃
j,Nφ
T−h−1W

j,Nφ−1

T−h−1

)
(A.10)

=
w̃
j,Nφ
T−h−1W

j,Nφ−1

T−h−1

1
M

∑M
j=1 w̃

j,Nφ
T−h−1W

j,Nφ−1

T−h−1

(
1

M

M∑
j=1

w̃
j,Nφ
T−h−1W

j,Nφ−1

T−h−1

)
= w̃

j,Nφ
T−h−1W

j,Nφ−1

T−h−1 .

Setting n∗ = 1 in (A.8) leads to the desired result. �

The following lemma simply states that the expected value of a sum is the sum of the

expected values, but it does so using a notation that we will encounter below.

Lemma 4 Suppose sj, j = 1, . . . ,M , is a sequence of random variables with density
∏M

j=1 p(s
j),

then

∫
· · ·
∫ (

1

M

M∑
j=1

f(sj)

)(M∏
j=1

p(sj)

)
ds1 · · · dsM =

1

M

M∑
j=1

∫
f(sj)p(sj)dsj.

Proof of Lemma 4. The statement is trivially satisfied for M = 1. Suppose that it is true

for M − 1, then

∫
· · ·
∫ (

1

M

M∑
j=1

f(sj)

)(M∏
j=1

p(sj)

)
ds1 · · · dsM (A.11)

=

∫
· · ·
∫ (

1

M
f(sM) +

M − 1

M

1

M − 1

M−1∑
j=1

f(sj)

)(
p(sM)

M−1∏
j=1

p(sj)

)
ds1 · · · dsM

=

(
1

M

∫
f(sM)p(sM)dsM

)M−1∏
j=1

∫
p(sj)dsj

+

(
M − 1

M

1

M − 1

M−1∑
j=1

∫
f(sj)p(sj)dsj

)∫
p(sM)dsM

=
1

M

M∑
j=1

∫
f(sj)p(sj)dsj, (A.12)

which verifies the claim for all M by induction. �

Online Appendix A-10

Lemma 5 Suppose that the incremental weights w̃j,nt are defined as in (7) and (14) and

that the selection step is implemented by multinomial resampling for a predetermined set of

iterations n ∈ N . Then

E

 Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)∣∣∣∣FT−1,Nφ,M

 =
1

M

M∑
j=1

p(yT |sj,NφT−1)W
j,Nφ
T−1 (A.13)

and

1

M

M∑
j=1

E

p(YT−h:T |sj,NφT−h−1)W
j,Nφ
T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)∣∣∣∣FT−h−2,Nφ,M

 (A.14)

=
1

M

M∑
j=1

p(YT−h−1:T |sj,NφT−h−2)W
j,Nφ
T−h−2.

Proof of Lemma 5. We first prove the Lemma under the assumption of no resampling,

i.e., N = ∅. We then discuss how the proof can be modified to allow for resampling.

Part 1 (No Resampling). We deduce from Lemma 3 that

E
[Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)∣∣∣∣FT−1,Nφ,M

]
=

1

M

M∑
j=1

E
[Nφ∏

n=1

w̃j,nT

W
j,Nφ
T−1

∣∣∣∣FT−1,Nφ,M

]
.

(A.15)

The subsequent derivations focus on the evaluation of the expectation on the right-hand-

side of this equation. We will subsequently integrate over the particles s1:M,1
T , . . . , s

1:M,Nφ−1
T ,

which enter the incremental weights w̃j,nT . We use s1:M,n
T to denote the set of particle values

{s1,n
T , . . . , sM,n

T }. Because W
j,Nφ
T−1 ∈ FT−1,Nφ,M it suffices to show that

E
[Nφ∏

n=1

w̃j,nT

∣∣∣∣FT−1,Nφ,M

]
= p(yT |sj,NφT−1). (A.16)

Recall that the initial state particle sj,1T is generated from the state-transition equation

Online Appendix A-11

p(sT |sj,NφT−1). The first incremental weight is defined as

w̃j,1T = p1(yT |sj,1T).

The incremental weight in tempering iteration n is given by

w̃j,nT =
pn(yT |sj,n−1

T)

pn−1(yT |sj,n−1
T)

.

Because we are omitting the selection step, the new particle value is generated in the mutation

step by sampling from the Markov transition kernel

sj,nT ∼ Kn(snT |sj,n−1
T , s

j,Nφ
T−1), (A.17)

which has the invariance property

pn(sT |yT , sT−1) =

∫
Kn(sT |ŝT ; sT−1)pn(ŝT |yT , sT−1)dŝT . (A.18)

Using the above notation, we can write

E

 Nφ∏
n=1

w̃j,nT

∣∣∣∣FT−1,Nφ,M

 (A.19)

=

∫
· · ·
∫ Nφ∏

n=3

pn(yT |sj,n−1
T)

pn−1(yT |sj,n−1
T)

Kn−1(sj,n−1
T |sj,n−2

T , s
j,Nφ
T−1)

×p2(yT |sj,1T)

p1(yT |sj,1T)
p1(yT |sj,1T)p(sj,1T |s

j,Nφ
T−1)dsj,1T · · · ds

j,Nφ−1
T .

The bridge posterior densities were defined as

pn(st|yt, st−1) =
pn(yt|st)p(st|st−1)

pn(yt|st−1)
, pn(yt|st−1) =

∫
pn(yt|st)p(st|st−1)dst. (A.20)

Using the invariance property of the transition kernel in (A.18) and the definition of the

Online Appendix A-12

bridge posterior densities, we deduce that

∫
Kn−1(sj,n−1

T |sj,n−2
T , s

j,Nφ
T−1)pn−1(yT |sj,n−2

T)p(sj,n−2
T |sj,NφT−1)dsj,n−2

T (A.21)

=

∫
Kn−1(sj,n−1

T |sj,n−2
T , s

j,Nφ
T−1)pn−1(sj,n−2

T |yT , sj,NφT−1)pn−1(yT |sj,NφT−1)dsj,n−2
T

= pn−1(sj,n−1
T |yT , sj,NφT−1)pn−1(yT |sj,NφT−1)

= pn−1(yT |sj,n−1
T)p(sj,n−1

T |sj,NφT−1).

The first equality follows from Bayes Theorem in (A.20). The second equality follows from

the invariance property of the transition kernel. The third equality uses Bayes Theorem

again.

We can now evaluate the integrals in (A.19). Consider the terms involving sj,1T∫
K2(sj,2T |sj,1T , s

j,Nφ
T−1)

p2(yT |sj,1T)

p1(yT |sj,1T)
p1(yT |sj,1T)p(sj,1T |s

j,Nφ
T−1)dsj,1T (A.22)

=

∫
K2(sj,2T |sj,1T , s

j,Nφ
T−1)p2(yT |sj,1T)p(sj,1T |s

j,Nφ
T−1)dsj,1T

= p2(yT |sj,2T)p(sj,2T |s
j,Nφ
T−1).

Thus,

E

 Nφ∏
n=1

w̃j,nT

∣∣∣∣FT−1,Nφ,M

 (A.23)

=

∫
· · ·
∫ Nφ∏

n=4

pn(yT |sj,n−1
T)

pn−1(yT |sj,n−1
T)

Kn−1(sj,n−1
T |sj,n−2

T , s
j,Nφ
T−1)

×p3(yT |sj,2T)

p2(yT |sj,2T)
p2(yT |sj,2T)p(sj,2T |s

j,Nφ
T−1)dsj,2T · · · ds

j,Nφ−1
T

=

∫
pNφ(yT |sj,Nφ−1

T)

pNφ−1(yT |sj,Nφ−1
T)

pNφ−1(yT |sj,Nφ−1
T)p(s

j,Nφ−1
T |sj,NφT−1)ds

j,Nφ−1
T

= p(yT |sj,NφT−1).

The first equality follows from (A.22). The second equality is obtained by sequentially

integrating out sj,2T , . . . , s
j,Nφ−2

T , using a similar argument as for sj,1T . This proves the first

Online Appendix A-13

part of the Lemma.

Part 2 (No Resampling). Using Lemma 3 we write

E
[
p(YT−h:T |sj,NφT−h−1, θ)W

j,Nφ
T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)∣∣∣∣FT−h−2,Nφ,M

]

= E
[
p(YT−h:T |sj,NφT−h−1, θ)

 Nφ∏
n=1

w̃j,nT−h−1

W
j,Nφ
T−h−2

∣∣∣∣FT−h−2,Nφ,M

]
(A.24)

To prove the second part of the Lemma we slightly modify the last step of the integration

in (A.23):

E

p(YT−h:T |sj,NφT−h−1)

 Nφ∏
n=1

w̃j,nT−h−1

∣∣∣∣FT−2,Nφ,M

 (A.25)

=

∫
p(YT−h:T |sj,NφT−h−1)pNφ(yT−h−1|sj,Nφ−1

T−h−1)p(s
j,Nφ−1

T−h−1|s
j,Nφ
T−h−2)ds

j,Nφ−1

T−h−1

= p(YT−h−1:T |sj,NφT−h−2),

as required.

Part 1 (Resampling in tempering iteration n̄). We now assume that the selection step is

executed once, in iteration n̄, i.e., N = {n̄}. For reasons that will become apparent subse-

quently, we will use i subscripts for particles in stages n = 1, . . . , n̄− 1. Using Lemma 3, we

deduce that it suffices to show:

E
[(n̄−1∏

n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))(
1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)
(A.26)

×
(

1

M

M∑
j=1

(Nφ∏
n=n̄+1

w̃j,nT

)
W j,n̄
T

)∣∣∣∣FT−1,Nφ,M

]

=
1

M

M∑
j=1

p(yT |sj,NφT−1)W
j,Nφ
T−1 .

To evaluate the expectation, we need to integrate over the particles s1:M,1
T , . . . , s

1:M,Nφ
T as well

Online Appendix A-14

as the particles ŝ1:M,n̄
T generated during the selection step. We have to distinguish two cases:

Case 1, n 6= n̄ : sj,nT ∼ Kn(sj,nT |sj,n−1
T , s

j,Nφ
T), j = 1, . . . ,M

Case 2, n = n̄ : sj,nT ∼ Kn(sj,nT |ŝj,nT , s
j,Nφ
T), j = 1, . . . ,M ;

ŝj,nT ∼MN
(
s1:M,n−1
T , W̃ 1:M,n

T

)
, j = 1, . . . ,M

where MN(·) here denotes the multinomial distribution.

In a preliminary step, we are integrating out the particles ŝ1:M,n̄
T . These particles enter the

Markov transition kernel Kn̄(sj,n̄T |ŝj,n̄T , s
j,Nφ
T−1) as well as the conditional density p(ŝj,n̄T |s1:M,n̄−1

T).

Under the assumption that the resampling step is executed using multinomial resampling,

p(ŝj,n̄T |s1:M,n̄−1
T) =

1

M

M∑
i=1

W̃ j,n̄
T δ(ŝj,n̄T − si,n̄−1

T),

where δ(x) is the Dirac function with the property that δ(x) = 0 for x 6= 0 and
∫
δ(x)dx = 1.

Integrating out the resampled particles yields

p(s1:M,n̄
T |s1:M,n̄−1

T) (A.27)

=

∫ M∏
j=1

Kn̄(sj,n̄T |ŝj,n̄T , s
j,Nφ
T−1)

[
1

M

M∑
i=1

W̃ i,n̄
T δ(ŝj,n̄T − si,n̄−1

T)

]
dŝ1:M,n̄

T

=
M∏
j=1

∫
Kn̄(sj,n̄T |ŝj,n̄T , s

j,Nφ
T−1)

[
1

M

M∑
i=1

W̃ i,n̄
T δ(ŝj,n̄T − si,n̄−1

T)

]
dŝj,n̄T

=
M∏
j=1

[
1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

]
.

In the last equation, the superscript for sT−1 changes from j to i because during the resam-

pling, we keep track of the history of the particle. Thus, if for particle j = 1 the value ŝ1,n̄
T

is set to s3,n̄−1
T , we also use s

3,Nφ
T−1 for this particle.

We can now express the expected value, which we abbreviate as E , as the following

Online Appendix A-15

integral:

E = E
[(n̄−1∏

n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T−1

))(
1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)
(A.28)

×
(

1

M

M∑
j=1

(Nφ∏
n=n̄+1

w̃j,nT

)
W j,n̄
T

)∣∣∣∣FT−1,Nφ,M

]

=

∫
· · ·
∫ (n̄−1∏

n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T−1

))(
1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)(
1

M

M∑
j=1

(Nφ∏
n=n̄+1

w̃j,nT

))

×
(n̄−1∏
n=1

M∏
j=1

Kn(si,nT |si,n−1
T , s

i,Nφ
T−1)

)(M∏
j=1

[
1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

])

×
(Nφ−1∏
n=n̄+1

M∏
j=1

Kn(sj,nT |sj,n−1
T , s

j,Nφ
T−1)

)
ds1:M,1

T · · · ds1:M,Nφ−1
T .

For the second equality we used the fact that W j,n̄
T = 1.

Using Lemma 4, we can write

∫
· · ·
∫ (

1

M

M∑
j=1

(Nφ∏
n=n̄+1

w̃j,nT

)(Nφ−1∏
n=n̄+1

M∏
j=1

Kn(sj,nT |sj,n−1
T , s

j,Nφ
T−1)

)
ds1:M,n̄+1

T · · · ds1:M,Nφ−1
T

=
1

M

M∑
j=1

∫
· · ·
∫ (Nφ∏

n=n̄+1

w̃j,nT

)(Nφ−1∏
n=n̄+1

Kn(sj,nT |sj,n−1
T , s

j,Nφ
T−1)

)
dsj,n̄+1

T · · · dsj,Nφ−1
T

=
1

M

M∑
j=1

F (sj,n̄T , s
j,Nφ
T−1). (A.29)

Online Appendix A-16

Now consider the following integral involving terms that depend on s1:M,n̄
T :

I1 =

∫ (
1

M

M∑
j=1

F
(
sj,n̄T , s

j,Nφ
T−1

))(1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)
(A.30)

×
M∏
j=1

[
1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

]
ds1:M,n̄

T

=

(
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

]
dsj,n̄T

)

×
(

1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

w̃i,n̄T W i,n̄−1
T Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

]
dsj,n̄T .

The first equality is the definition of I1. The second equality is a consequence of Lemma 4.

The last equality is obtained by recalling that

W̃ i,n̄
T =

w̃i,n̄T W i,n̄−1
T

1
M

∑M
i=1 w̃

i,n̄
T W i,n̄−1

T

.

We proceed in the evaluation of the expected value E by integrating over the particle

values s1:M,1
T , . . . , s1:M,n̄−1

T :

E =

∫
· · ·
∫
I1 ·
(n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))
(A.31)

×
(n̄−1∏
n=1

M∏
j=1

Kn(si,nT |si,n−1
T , s

i,Nφ
T−1)

)
ds1:M,1

T · · · ds1:M,n̄−1
T ,

Online Appendix A-17

where

I1 ·
(n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))

=

(
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

w̃i,n̄T W i,n̄−1
T Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

]
dsj,n̄T

)

×
(n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

w̃i,n̄T W i,n̄−1
T

(n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))
×Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

]
dsj,n̄T

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

w̃i,n̄T

(n̄−1∏
n=1

w̃i,nT

)
W

i,Nφ
T−1

×Kn̄(sj,n̄T |si,n̄−1
T , s

i,Nφ
T−1)

]
dsj,n̄T .

The last equality follows from the second part of Lemma 3. Notice the switch from j to i

superscript for functions of particles in stages n < n̄. Thus,

E =
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

) ∫
· · ·
∫ [

1

M

M∑
i=1

w̃i,n̄T

(n̄−1∏
n=1

w̃i,nT

)
W

i,Nφ
T−1 (A.32)

×Kn̄(sj,n̄T |si,n̄−1
T , s

i,Nφ
T−1)

](n̄−1∏
n=1

M∏
i=1

Kn(si,nT |si,n−1
T , s

i,Nφ
T−1)

)
ds1:M,1

T · · · ds1:M,n̄−1
T dsj,n̄T

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

∫
· · ·
∫ (n̄∏

n=1

w̃i,nT

)
W

i,Nφ
T−1

×Kn̄(sj,n̄T |si,n̄−1
T , s

i,Nφ
T−1)

n̄−1∏
n=1

Kn(si,nT |si,n−1
T , s

i,Nφ
T−1)dsi,1T · · · dsi,n̄−1

T

]
dsj,n̄T

The second equality follows from Lemma 4. The calculations in (A.23) imply that

∫
· · ·
∫ (n̄∏

n=1

w̃i,nT

)
W

i,Nφ
T−1

n̄−1∏
n=1

Kn(si,nT |si,n−1
T , s

i,Nφ
T−1)dsi,1T · · · dsi,n̄−2

T (A.33)

= pn̄−1(yT |si,n̄−1
T)p(si,n̄−1

T |si,NφT−1)W
i,Nφ
T−1

Online Appendix A-18

In turn,

E =
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)[1

M

M∑
i=1

∫
Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)

×pn̄(yT |si,n̄−1
T)p(si,n̄−1

T |si,NφT−1)W
i,Nφ
T−1 ds

i,n̄−1
T

]
dsj,n̄T

=
1

M

M∑
i=1

[
1

M

M∑
j=1

∫
F
(
sj,n̄T , s

j,Nφ
T−1

)
Kn̄(sj,n̄T |si,n̄−1

T , s
i,Nφ
T−1)dsj,n̄T (A.34)

×pn̄(yT |si,n̄−1
T)p(si,n̄−1

T |si,NφT−1)W
i,Nφ
T−1 ds

i,n̄−1
T

]
=

1

M

M∑
i=1

∫
F
(
si,n̄T , s

i,Nφ
T−1

)
pn̄(yT |si,n̄T)p(si,n̄T |s

i,Nφ
T−1)W

i,Nφ
T−1 ds

i,n̄
T

=
1

M

M∑
j=1

∫
· · ·
∫ (Nφ∏

n=n̄+1

w̃j,nT

)(Nφ−1∏
n=n̄+1

Kn(sj,nT |sj,n−1
T , s

j,Nφ
T−1)

)
×pn̄(yT |sj,n̄T)p(sj,n̄T |s

j,Nφ
T−1)W

j,Nφ
T−1 ds

j,n̄+1
T · · · dsj,Nφ−1

T pn̄(yT |sj,n̄T)p(sj,n̄T |s
j,Nφ
T−1)dsj,n̄T

=
1

M

M∑
j=1

p(yT |sj,NφT−1)W
j,Nφ
T−1 .

The second equality is obtained by changing the order of two summations. To obtain the

third equality we integrate out the si,n̄−1
T terms along the lines of (A.21). Notice that the

value of the integral is identical for all values of the j superscript. Thus, we simply set j = i

and drop the average. For the fourth equality, we plug in the definition of F
(
si,n̄T , s

i,Nφ
T−1

)
and

replace the i index with a j index. The last equality follows from calculations similar to

those in (A.23). This completes the analysis of Part 1.

Part 2 (Resampling in tempering iteration n̄). A similar argument as for Part 1 can be used

to extend the result for Part 2.

Resampling in multiple tempering iterations. The previous analysis can be extended to the

case in which the selection step is executed in multiple tempering iterations n ∈ N , assuming

that the set N does not itself depend on the particle system. �

Online Appendix A-19

A.3.2 Proof of Main Theorem

Proof of Theorem 2. Suppose that for any h such that 0 ≤ h ≤ T − 1

E
[
p̂(YT−h:T |Y1:T−h−1, θ)|FT−h−1,Nφ,M

]
=

1

M

M∑
j=1

p(YT−h:T |sj,NφT−h−1, θ)W
j,Nφ
T−h−1, (A.35)

where

p̂(YT−h:T |Y1:T−h−1, θ) =
T∏

t=T−h

 Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nt W j,n−1
t

) .

Then, by setting h = T − 1, we can deduce that

E
[
p̂(Y1:T |θ)|F0,Nφ,M

]
=

1

M

M∑
j=1

p(Y1:T |sj,Nφ0 , θ)W
j,Nφ
0 . (A.36)

Recall that for period t = 0 we adopted the convention that Nφ = 1 and assumed that the

states were initialized by direct sampling: s
j,Nφ
0 ∼ p(s0) and W

j,Nφ
0 = 1. Thus,

E
[
p̂(Y1:T |θ)

]
= E

[
E
[
p̂(Y1:T |θ)|F0,Nφ,M

]]
(A.37)

= E
[

1

M

M∑
j=1

p(Y1:T |sj,Nφ0 , θ)W
j,Nφ
0

]
=

∫
p(Y1:T |s0, θ)p(s0)ds0

= p(Y1:T |θ),

as desired.

In the remainder of the proof we use an inductive argument to establish (A.35). If (A.35)

Online Appendix A-20

holds for h, it also has to hold for h+ 1:

E
[
p̂(YT−h−1:T |Y1:T−h−2, θ)|FT−h−2,Nφ,M

]
= E

[
E
[
p̂(YT−h:T |Y1:T−h−1, θ)

∣∣FT−h−1,Nφ,M

]
p̂(yT−h−1|Y1:T−h−2, θ)

∣∣∣∣FT−h−2,Nφ,M

]
=

1

M

M∑
j=1

E
[
p(YT−h:T |sj,NφT−h−1, θ)W

j,Nφ
T−h−1p̂(yT−h−1|Y1:T−h−2, θ)

∣∣FT−h−2,Nφ,M

]
=

1

M

M∑
j=1

E

p(YT−h:T |sj,NφT−h−1, θ)W
j,Nφ
T−h−1

 Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)∣∣∣∣FT−h−2,Nφ,M

=

1

M

M∑
j=1

p(YT−h−1:T |sj,NφT−h−2, θ)W
j,Nφ
T−h−2

Note that FT−h−2,Nφ,M ⊂ FT−h−1,Nφ,M . Thus, the first equality follows from the law of iter-

ated expectations. The second equality follows from the inductive hypothesis (A.35). The

third equality uses the definition of the period-likelihood approximation in (21) of Algo-

rithm 2. The last equality follows from the second part of Lemma 5.

We now verify that the inductive hypothesis (A.35) holds for h = 0. Using the definition

of p̂(yT |Y1:T−1, θ), we can write

E
[
p̂(yT |Y1:T−1, θ)|FT−1,Nφ,M

]
= E

 Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)∣∣∣∣FT−1,Nφ,M

 (A.38)

=
1

M

M∑
j=1

p(yT |sj,NφT−1)W
j,Nφ
T−1 .

The second equality follows from the first part of Lemma 5. Thus, we can deduce that (A.35)

holds for h = T − 1 as required. This completes the proof. �

B Computational Details

The code for this project is available at http://github.com/eph/tempered_pf. The appli-

cations in Section 4 were coded in Fortran and compiled using the Intel Fortran Compiler

http://github.com/eph/tempered_pf

Online Appendix A-21

(version: 13.0.0), including the math kernel library. The calculations in Algorithm 1, part

2(a)ii, Algorithm 2, part 1(a)i, and Algorithm 2, part 2(c) were implemented using OpenMP

(shared memory) multithreading.

C DSGE Models and Data Sources

C.1 Small-Scale DSGE Model

C.1.1 Equilibrium Conditions

We write the equilibrium conditions by expressing each variable in terms of percentage

deviations from its steady state value. Let x̂t = ln(xt/x) and write

1 = βEt
[
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

]
(A.39)

0 =
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(A.40)

−βEt
[(
eπ̂t+1 − 1

)
e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1

]
+

1− ν
νφπ2

(
1− eτ ĉt

)
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(A.41)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t (A.42)

+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

ĝt = ρgĝt−1 + εg,t (A.43)

ẑt = ρz ẑt−1 + εz,t. (A.44)

Log-linearization and straightforward manipulation of Equations (A.39) to (A.41) yield

the following representation for the consumption Euler equation, the New Keynesian Phillips

Online Appendix A-22

curve, and the monetary policy rule:

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
(A.45)

+ĝt − Et[ĝt+1]

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t

where

κ = τ
1− ν
νπ2φ

. (A.46)

In order to construct a likelihood function, we have to relate the model variables to a set

of observables yt. We use the following three observables for estimation: quarter-to-quarter

per capita GDP growth rates (YGR), annualized quarter-to-quarter inflation rates (INFL),

and annualized nominal interest rates (INT). The three series are measured in percentages

and their relationship to the model variables is given by the following set of equations:

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt) (A.47)

INFLt = π(A) + 400π̂t

INTt = π(A) + r(A) + 4γ(Q) + 400R̂t.

The parameters γ(Q), π(A), and r(A) are related to the steady states of the model economy

as follows:

γ = 1 +
γ(Q)

100
, β =

1

1 + r(A)/400
, π = 1 +

π(A)

400
.

The structural parameters are collected in the vector θ. Since in the first-order approximation

the parameters ν and φ are not separately identifiable, we express the model in terms of κ,

defined in (A.46). Let

θ = [τ, κ, ψ1, ψ2, ρR, ρg, ρz, r
(A), π(A), γ(Q), σR, σg, σz]

′.

Online Appendix A-23

C.1.2 Data Sources

1. Per Capita Real Output Growth Take the level of real gross domestic product,

(FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian

Non-institutional Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”),

call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the CPI price level, (FRED mnemonic “CPIAUCSL”),

call it CPIt. Then,

Annualized Inflation = 400 ln

(
CPIt
CPIt−1

)
.

3. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-

FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt.

C.2 The Smets-Wouters Model

C.2.1 Equilibrium Conditions

The log-linearized equilibrium conditions of the Smets and Wouters (2007) model take the

following form:

Online Appendix A-24

ŷt = cy ĉt + iy ît + zyẑt + εgt (A.48)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 (A.49)

+
wlc(σc − 1)

σc(1 + h/γ)
(l̂t − Etl̂t+1)

− 1− h/γ
(1 + h/γ)σc

(r̂t − Etπ̂t+1)− 1− h/γ
(1 + h/γ)σc

εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 (A.50)

+
1

ϕγ2(1 + βγ(1−σc))
q̂t + εit

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 (A.51)

+(1− β(1− δ)γ−σc)Etr̂kt+1 − εbt
ŷt = Φ(αk̂st + (1− α)l̂t + εat) (A.52)

k̂st = k̂t−1 + ẑt (A.53)

ẑt =
1− ψ
ψ

r̂kt (A.54)

Online Appendix A-25

k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)/γ)̂it (A.55)

+(1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

µ̂pt = α(k̂st − l̂t)− ŵt + εat (A.56)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (A.57)

− (1− βγ(1−σc)ξp)(1− ξp)
(1 + ιpβγ(1−σc))(1 + (Φ− 1)εp)ξp

µ̂pt + εpt

r̂kt = l̂t + ŵt − k̂st (A.58)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ (ĉt − h/γĉt−1) (A.59)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 (A.60)

+Etπ̂t+1) +
1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t

− (1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)εw)ξw
µ̂wt + εwt

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t)) (A.61)

+r∆y((ŷt − ŷ∗t)− (ŷt−1 − ŷ∗t−1)) + εrt .

The exogenous shocks evolve according to

Online Appendix A-26

εat = ρaε
a
t−1 + ηat (A.62)

εbt = ρbε
b
t−1 + ηbt (A.63)

εgt = ρgε
g
t−1 + ρgaη

a
t + ηgt (A.64)

εit = ρiε
i
t−1 + ηit (A.65)

εrt = ρrε
r
t−1 + ηrt (A.66)

εpt = ρrε
p
t−1 + ηpt − µpηpt−1 (A.67)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1. (A.68)

Online Appendix A-27

The counterfactual no-rigidity prices and quantities evolve according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zyẑ

∗
t + εgt (A.69)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ∗t+1 (A.70)

+
wlc(σc − 1)

σc(1 + h/γ)
(l̂∗t − Etl̂∗t+1)

− 1− h/γ
(1 + h/γ)σc

r∗t −
1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî∗t+1

+
1

ϕγ2(1 + βγ(1−σc))
q̂∗t + εit (A.71)

q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t (A.72)

+(1− β(1− δ)γ−σc)Etrk∗t+1 − εbt
ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat) (A.73)

k̂s∗t = k∗t−1 + z∗t (A.74)

ẑ∗t =
1− ψ
ψ

r̂k∗t (A.75)

k̂∗t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it (A.76)

+(1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

ŵ∗t = α(k̂s∗t − l̂∗t) + εat (A.77)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (A.78)

ŵ∗t = σl l̂
∗
t +

1

1− h/γ (ĉ∗t + h/γĉ∗t−1). (A.79)

Online Appendix A-28

The steady state (ratios) that appear in the measurement equation or the log-linearized

equilibrium conditions are given by

γ = γ̄/100 + 1 (A.80)

π∗ = π̄/100 + 1 (A.81)

r̄ = 100(β−1γσcπ∗ − 1) (A.82)

rkss = γσc/β − (1− δ) (A.83)

wss =

(
αα(1− α)(1−α)

Φrkss
α

) 1
1−α

(A.84)

ik = (1− (1− δ)/γ)γ (A.85)

lk =
1− α
α

rkss
wss

(A.86)

ky = Φl
(α−1)
k (A.87)

iy = (γ − 1 + δ)ky (A.88)

cy = 1− gy − iy (A.89)

zy = rkssky (A.90)

wlc =
1

λw

1− α
α

rkssky
cy

. (A.91)

The measurement equations take the form:

Y GRt = γ̄ + ŷt − ŷt−1 (A.92)

INFt = π̄ + π̂t

FFRt = r̄ + R̂t

CGRt = γ̄ + ĉt − ĉt−1

IGRt = γ̄ + ît − ît−1

WGRt = γ̄ + ŵt − ŵt−1

HOURSt = l̄ + l̂t.

Online Appendix A-29

C.2.2 Data

The data cover 1966:Q1 to 2004:Q4. The construction follows that of Smets and Wouters

(2007). Output data come from the NIPA; other sources are noted in the exposition.

1. Per Capita Real Output Growth. Take the level of real gross domestic product

(FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian

Non-institutional Population (FRED mnemonic

“CNP16OV” / BLS series “LNS10000000”), normalized so that its 1992Q3 value is

1, call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Per Capita Real Consumption Growth. Take the level of personal consumption

expenditures (FRED mnemonic “PCEC”), call it CONSt. Take the level of the GDP

price deflator (FRED mnemonic “GDPDEF”), call it GDPPt. Then,

Per Capita Real Consumption Growth

= 100

[
ln

(
CONSt

GDPPtPOPt

)
− ln

(
CONSt−1

GDPPt−1POPt−1

)]
.

3. Per Capita Real Investment Growth. Take the level of fixed private investment

(FRED mnemonic “FPI”), call it INVt. Then,

Per Capita Real Investment Growth

= 100

[
ln

(
INVt

GDPPtPOPt

)
− ln

(
INVt−1

GDPPt−1POPt−1

)]
.

Online Appendix 30

4. Per Capita Real Wage Growth. Take the BLS measure of compensation per

hour for the nonfarm business sector (FRED mnemonic “COMPNFB” / BLS series

“PRS85006103”), call it Wt. Then,

Per Capita Real Wage Growth

= 100

[
ln

(
Wt

GDPPt

)
− ln

(
Wt−1

GDPPt−1

)]
.

5. Per Capita Hours Index. Take the index of average weekly nonfarm business hours

(FRED mnemonic / BLS series “PRS85006023”), call it HOURSt. Take the number of

employed civilians (FRED mnemonic “CE16OV”), normalized so that its 1992Q3 value

is 1, call it EMPt. Then,

Per Capita Hours = 100 ln

(
HOURStEMPt

POPt

)
.

The series is then demeaned.

6. Inflation. Take the GDP price deflator, then

Inflation = 100 ln

(
GDPPt
GDPPt−1

)
.

7. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-

FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt/4.

